高校化学工程学报
高校化學工程學報
고교화학공정학보
JOURNAL OF CHEMICAL ENGINEERING OF CHINESE UNIVERSITIES
2014年
3期
654-658
,共5页
ATRP%聚苯乙烯配合物%希夫碱%荧光%微波
ATRP%聚苯乙烯配閤物%希伕堿%熒光%微波
ATRP%취분을희배합물%희부감%형광%미파
ATRP%polystyrene complexes%Schiff base%fluorescence%microwave
通过原子转移自由基聚合(ATRP)方法合成了含水杨醛端基的聚苯乙烯(PSt-S),并分别与对氨基苯甲酸、对甲氧基苯胺、苯胺以及对硝基苯胺反应,使其水杨醛端基转变成希夫碱可配位基团。这类含希夫碱端基的聚苯乙烯在微波辐射条件下分别与Zn(II)配位,得到端基为希夫碱-Zn(II)配位基团的聚苯乙烯配合物,具有良好的成膜性,并能发射较强的绿色荧光。考察了取代基、聚合物分子量、微波辐射强度和时间对聚苯乙烯配合物荧光强度的影响,结果表明供电子基团的引入使得荧光发射峰红移,且荧光强度增大;控制聚合物的分子量可以调控荧光强度;相对于常规条件,微波辐射有助于配位反应。
通過原子轉移自由基聚閤(ATRP)方法閤成瞭含水楊醛耑基的聚苯乙烯(PSt-S),併分彆與對氨基苯甲痠、對甲氧基苯胺、苯胺以及對硝基苯胺反應,使其水楊醛耑基轉變成希伕堿可配位基糰。這類含希伕堿耑基的聚苯乙烯在微波輻射條件下分彆與Zn(II)配位,得到耑基為希伕堿-Zn(II)配位基糰的聚苯乙烯配閤物,具有良好的成膜性,併能髮射較彊的綠色熒光。攷察瞭取代基、聚閤物分子量、微波輻射彊度和時間對聚苯乙烯配閤物熒光彊度的影響,結果錶明供電子基糰的引入使得熒光髮射峰紅移,且熒光彊度增大;控製聚閤物的分子量可以調控熒光彊度;相對于常規條件,微波輻射有助于配位反應。
통과원자전이자유기취합(ATRP)방법합성료함수양철단기적취분을희(PSt-S),병분별여대안기분갑산、대갑양기분알、분알이급대초기분알반응,사기수양철단기전변성희부감가배위기단。저류함희부감단기적취분을희재미파복사조건하분별여Zn(II)배위,득도단기위희부감-Zn(II)배위기단적취분을희배합물,구유량호적성막성,병능발사교강적록색형광。고찰료취대기、취합물분자량、미파복사강도화시간대취분을희배합물형광강도적영향,결과표명공전자기단적인입사득형광발사봉홍이,차형광강도증대;공제취합물적분자량가이조공형광강도;상대우상규조건,미파복사유조우배위반응。
An atom transfer radical polymerization process (ATRP) of styrene (St) was proceeded using 5-chloromethyl-2-hydroxy-benzaldehyde as the initiator, CuCl as the catalyst and 2,2'-Bipyridine(Bpy) as the ligand. Fuctionalized polystyrene ligands containing schiff base end groups were obtained by condensation of p-methoxyanilin, aniline, p-nitroaniline and p-aminobenzoic acid with polystyrene containing a salicylaldehyde end group (PSt-S), respectively. Under microwave assisted conditions, polystyrene ligands containing schiff base end groups were applied to prepare Zn(II) complexes. The structure of polystyrene ligands and their complexes were characterized by 1H-NMR,IR and UV-Vis spectra. NMR results show that the proton of-CHO completely disappears and that of-CH=N appears in the spectra, so the condensation reaction of salicyladehyde with four kinds of aniline derivatives are completed. When excited at 330 nm, the four polystyrene Zn(II) complexes prepared emits intense green fluorescence. Moreover, these four polystyrene Zn(II) complexes are soluble in solvents and easy to form film. Moreover, the effects of different substitutional groups, molecular weights and microwave reaction conditions on Zn contents and fluorescent intensity were also discussed. The results show that electronic donor groups such as-OCH3 cause red shift of the fluorescence with an increase of intensity. By controlling molecular weight of polystyrene, the fluorescence intensity can be controlled. Compared to room temperature or heating conditions, microwave radiation can accelerate the reaction rate.