食品安全质量检测学报
食品安全質量檢測學報
식품안전질량검측학보
FOOD SAFETY AND QUALITY DETECTION TECHNOLOGY
2014年
6期
1679-1686
,共8页
李艳肖%黄晓玮%邹小波%赵杰文%石吉勇%朱瑶迪
李豔肖%黃曉瑋%鄒小波%趙傑文%石吉勇%硃瑤迪
리염초%황효위%추소파%조걸문%석길용%주요적
花茶%花青素%蚁群-遗传算法%近红外光谱%定量分析模型
花茶%花青素%蟻群-遺傳算法%近紅外光譜%定量分析模型
화다%화청소%의군-유전산법%근홍외광보%정량분석모형
scented tea%anthocyanin%ACO-GA-iPLS%near infrared spectroscopy%quantitative analysis model
目的:本研究基于蚁群-遗传区间偏最小二乘(ACO-GA-iPLS)近红外谱区筛选方法预测花茶花青素含量。方法首先对花茶近红外光谱进行预处理;然后用ACO-iPLS优选出特征子区间;最后对所选的特征子区间,用GA-iPLS进一步细化花青素的特征子区间,并建立花青素的预测模型。结果优选出3个特征子区间(第1、9、10子区间),所建模型对应的交互验证均方根误差(RMSECV)和预测均方根误差(RMSEP)分别为0.1460 mg/g和0.1840 mg/g,校正集和预测集相关系数分别为0.9187和0.8856。结论 ACO-GA-iPLS可以有效选择近红外光谱特征波长,简化模型,提高模型精度。
目的:本研究基于蟻群-遺傳區間偏最小二乘(ACO-GA-iPLS)近紅外譜區篩選方法預測花茶花青素含量。方法首先對花茶近紅外光譜進行預處理;然後用ACO-iPLS優選齣特徵子區間;最後對所選的特徵子區間,用GA-iPLS進一步細化花青素的特徵子區間,併建立花青素的預測模型。結果優選齣3箇特徵子區間(第1、9、10子區間),所建模型對應的交互驗證均方根誤差(RMSECV)和預測均方根誤差(RMSEP)分彆為0.1460 mg/g和0.1840 mg/g,校正集和預測集相關繫數分彆為0.9187和0.8856。結論 ACO-GA-iPLS可以有效選擇近紅外光譜特徵波長,簡化模型,提高模型精度。
목적:본연구기우의군-유전구간편최소이승(ACO-GA-iPLS)근홍외보구사선방법예측화다화청소함량。방법수선대화다근홍외광보진행예처리;연후용ACO-iPLS우선출특정자구간;최후대소선적특정자구간,용GA-iPLS진일보세화화청소적특정자구간,병건립화청소적예측모형。결과우선출3개특정자구간(제1、9、10자구간),소건모형대응적교호험증균방근오차(RMSECV)화예측균방근오차(RMSEP)분별위0.1460 mg/g화0.1840 mg/g,교정집화예측집상관계수분별위0.9187화0.8856。결론 ACO-GA-iPLS가이유효선택근홍외광보특정파장,간화모형,제고모형정도。
ABSTRACT:Objective In order to improve the prediction accuracy of quantitative analysis model of NIR spectroscopy, this study proposed a method to select the optimal spectra intervals from the whole NIR spec-troscopy, and predict the anthocyanin content of scented tea. Methods Raw NIR spectra of scented tea sam-ples were preprocessed by SNV, then wavelength regions were selected by ant colony optimization (ACO) al-gorithm. Finally, the genetic algorithm-interval partial least squares was used to refine the wavelength regions selected by ACO, and predict the anthocyanin content of scented tea. Results The scented tea spectra were divided into 12 intervals, among which 3 subsets, i.e. No. 1, 9, 10 were selected by ACO-iPLS. Then, the se-lected wavelength regions set were divided into 12 intervals and selected by GA-iPLS. The optimal iPLS model was built with the RMSECV and RMSEP were 0.1460 mg/g and 0.1840 mg/g, and the calibration and predic-tion correlation coefficient were 0.9187 and 0.8856, respectively. Conclusion The ACO-GA-iPLS can effec-tively select wavelength regions from near infrared spectroscopy, simplify model complexity and improve ac-curately of model.