哈尔滨工程大学学报
哈爾濱工程大學學報
합이빈공정대학학보
JOURNAL OF HARBIN ENGINEERING UNIVERSITY
2014年
6期
701-706
,共6页
半潜式平台%动力定位%过驱动系统%模型预测控制%扰动补偿%约束控制%推力分配%推力损失
半潛式平檯%動力定位%過驅動繫統%模型預測控製%擾動補償%約束控製%推力分配%推力損失
반잠식평태%동력정위%과구동계통%모형예측공제%우동보상%약속공제%추력분배%추력손실
semi-submersible platform%dynamic positioning%over-actuated system%model predictive control%dis-turbance compensator%constrained control%thrust allocation%thrust loss
半潜式平台动力定位系统仅能控制纵荡、横荡和艏摇的低频运动,而整个系统安装的推力器个数大于被控自由度个数,因此整个定位系统为过驱动系统。针对该系统,采用模型预测控制,将虚拟控制力计算和推力分配实现一体化设计。控制力由推力器推力显式表达,充分考虑了推力器物理性能,以推力器推力变化率为控制参数。设计中,首先利用当前运动状态预测环境扰动,通过最小二乘法实现环境扰动的初次分配,然后再进行标准模型预测控制,充分考虑了桨-桨干扰造成的推力损失问题,通过设置上下游推力器间推力夹角,有效地避免了推力损失。最后给出数值算例验证了该方法。
半潛式平檯動力定位繫統僅能控製縱盪、橫盪和艏搖的低頻運動,而整箇繫統安裝的推力器箇數大于被控自由度箇數,因此整箇定位繫統為過驅動繫統。針對該繫統,採用模型預測控製,將虛擬控製力計算和推力分配實現一體化設計。控製力由推力器推力顯式錶達,充分攷慮瞭推力器物理性能,以推力器推力變化率為控製參數。設計中,首先利用噹前運動狀態預測環境擾動,通過最小二乘法實現環境擾動的初次分配,然後再進行標準模型預測控製,充分攷慮瞭槳-槳榦擾造成的推力損失問題,通過設置上下遊推力器間推力夾角,有效地避免瞭推力損失。最後給齣數值算例驗證瞭該方法。
반잠식평태동력정위계통부능공제종탕、횡탕화수요적저빈운동,이정개계통안장적추력기개수대우피공자유도개수,인차정개정위계통위과구동계통。침대해계통,채용모형예측공제,장허의공제력계산화추력분배실현일체화설계。공제력유추력기추력현식표체,충분고필료추력기물이성능,이추력기추력변화솔위공제삼수。설계중,수선이용당전운동상태예측배경우동,통과최소이승법실현배경우동적초차분배,연후재진행표준모형예측공제,충분고필료장-장간우조성적추력손실문제,통과설치상하유추력기간추력협각,유효지피면료추력손실。최후급출수치산례험증료해방법。
The dynamic positioning system ( DPS) of the deepwater semi-submersible platform can only control low-frequency motions of surge, sway and yaw. DPS can be considered as an over-actuated system, because the number of propellers is more than the horizontal plane degrees of freedom. Model predictive control ( MPC) which integrates the virtual control force calculation and thrust allocation was adopted. The control forces were explicitly expressed by the propellers'thrust forces, which fully considered the propellers′physical performance, and the thrust change rate was considered as the control parameters. In the design, the environment disturbance was predicted firstly based on the current dynamic states, achieving the initial distribution of environmental perturbations by using the least squares method. And then the standard model predictive control was done, which takes full consideration of the thrust loss due to thrust-thrust interaction problems. It effectively avoided thrust loss by setting the thrust angle between the upstream and downstream thrusters. Based on these designs, while the virtual control forces are gotten, they are allocated directly. Finally the effectiveness of the algorithm is verified.