软件工程师
軟件工程師
연건공정사
SOFTWARE ENGINEER
2014年
7期
58-60
,共3页
近红外光谱%数据处理%偏最小二乘%淀粉%蛋白质
近紅外光譜%數據處理%偏最小二乘%澱粉%蛋白質
근홍외광보%수거처리%편최소이승%정분%단백질
near infrared spectroscopy%DP%partial least square%starch%protein
为了满足消费市场对大米品质快速实时检测的需要,对未经过粉碎、过筛等处理的大米,采集了4000cm-1-12500cm-1范围的近红外光谱。通过计算机数据处理,研究了大米的光谱数据,建立了一阶微分光谱数据与淀粉含量和蛋白质含量之间的偏最小二乘回归法定量分析模型。试验分析表明:淀粉的预测相关系数为0.912,预测标准偏差SEP为0.084,预测均方根误差为RMSEP为0.058;蛋白质的预测相关系数为0.898,SEP为0.095,RMSEP为0.121。表明采用一阶微分光谱数据分析法可以较好地预测经简单处理后的大米中淀粉含量和蛋白质含量,该结论为日后大米品质的快速特性光谱测量奠定了基础。
為瞭滿足消費市場對大米品質快速實時檢測的需要,對未經過粉碎、過篩等處理的大米,採集瞭4000cm-1-12500cm-1範圍的近紅外光譜。通過計算機數據處理,研究瞭大米的光譜數據,建立瞭一階微分光譜數據與澱粉含量和蛋白質含量之間的偏最小二乘迴歸法定量分析模型。試驗分析錶明:澱粉的預測相關繫數為0.912,預測標準偏差SEP為0.084,預測均方根誤差為RMSEP為0.058;蛋白質的預測相關繫數為0.898,SEP為0.095,RMSEP為0.121。錶明採用一階微分光譜數據分析法可以較好地預測經簡單處理後的大米中澱粉含量和蛋白質含量,該結論為日後大米品質的快速特性光譜測量奠定瞭基礎。
위료만족소비시장대대미품질쾌속실시검측적수요,대미경과분쇄、과사등처리적대미,채집료4000cm-1-12500cm-1범위적근홍외광보。통과계산궤수거처리,연구료대미적광보수거,건립료일계미분광보수거여정분함량화단백질함량지간적편최소이승회귀법정량분석모형。시험분석표명:정분적예측상관계수위0.912,예측표준편차SEP위0.084,예측균방근오차위RMSEP위0.058;단백질적예측상관계수위0.898,SEP위0.095,RMSEP위0.121。표명채용일계미분광보수거분석법가이교호지예측경간단처리후적대미중정분함량화단백질함량,해결론위일후대미품질적쾌속특성광보측량전정료기출。
The aim of this study is to investigate the potential of the near infrared spectroscopy technique for non-destructive measurement of rice starch contents and protein contents to meet the needs of consumer markets.Spectral properties of 100 simply treated rice samples were analyzed.The quantitative analysis models were founded to determine the starch contents and protein contents.The correlation coefifcients are 0.912 and 0.898,standard errors of prediction are 0.084 and 0.095, and root mean standard errors of prediction are 0.058 and 0.121, respectively.The results show that it can predict starch contents and protein contents commendably with the ifrst derivate spectra.This research lays the basis for ifeld experiment by using infrared spectroscopy technique to fast measurement of rice starch contents and protein contents.