计算机科学与探索
計算機科學與探索
계산궤과학여탐색
JOURNAL OF FRONTIERS OF COMPUTER SCIENCE & TECHNOLOGY
2014年
7期
877-885
,共9页
判别近邻嵌入(DNE)%邻接图%局部结构%人脸识别
判彆近鄰嵌入(DNE)%鄰接圖%跼部結構%人臉識彆
판별근린감입(DNE)%린접도%국부결구%인검식별
discriminant neighborhood embedding (DNE)%adjacency graph%local structure%face recognition
判别近邻嵌入算法(discriminant neighborhood embedding,DNE)通过构造邻接图,使得在投影子空间中能够保持原始数据的局部结构,能有效地发现最佳判别方向。但是它有两方面的不足:一方面不能标识样本点的近邻样本点位置信息,从而不能更好地保持邻域结构;另一方面当数据不均衡时,不能实现子空间中类内聚合或者类间分离的目的,这不利于分类。为此提出了一种新的有监督子空间学习算法--局部平衡的判别近邻嵌入算法(locality-balanced DNE,LBDNE)。在构建邻接图时,局部平衡的判别近邻嵌入算法分别建立同类邻接图和异类邻接图,并通过引入一个控制参数,有效地平衡了类内与类间的关系。该算法与其他经典算法相比,在人脸识别问题上具有较高的识别率,充分说明了局部平衡的判别近邻嵌入算法能够有效地处理识别问题。
判彆近鄰嵌入算法(discriminant neighborhood embedding,DNE)通過構造鄰接圖,使得在投影子空間中能夠保持原始數據的跼部結構,能有效地髮現最佳判彆方嚮。但是它有兩方麵的不足:一方麵不能標識樣本點的近鄰樣本點位置信息,從而不能更好地保持鄰域結構;另一方麵噹數據不均衡時,不能實現子空間中類內聚閤或者類間分離的目的,這不利于分類。為此提齣瞭一種新的有鑑督子空間學習算法--跼部平衡的判彆近鄰嵌入算法(locality-balanced DNE,LBDNE)。在構建鄰接圖時,跼部平衡的判彆近鄰嵌入算法分彆建立同類鄰接圖和異類鄰接圖,併通過引入一箇控製參數,有效地平衡瞭類內與類間的關繫。該算法與其他經典算法相比,在人臉識彆問題上具有較高的識彆率,充分說明瞭跼部平衡的判彆近鄰嵌入算法能夠有效地處理識彆問題。
판별근린감입산법(discriminant neighborhood embedding,DNE)통과구조린접도,사득재투영자공간중능구보지원시수거적국부결구,능유효지발현최가판별방향。단시타유량방면적불족:일방면불능표식양본점적근린양본점위치신식,종이불능경호지보지린역결구;령일방면당수거불균형시,불능실현자공간중류내취합혹자류간분리적목적,저불리우분류。위차제출료일충신적유감독자공간학습산법--국부평형적판별근린감입산법(locality-balanced DNE,LBDNE)。재구건린접도시,국부평형적판별근린감입산법분별건립동류린접도화이류린접도,병통과인입일개공제삼수,유효지평형료류내여류간적관계。해산법여기타경전산법상비,재인검식별문제상구유교고적식별솔,충분설명료국부평형적판별근린감입산법능구유효지처리식별문제。
Discriminant neighborhood embedding (DNE) is one of methods for dimensionality reduction. By con-structing an adjacency graph to keep the local structure of original data in the subspace, DNE can effectively find an optimal discriminant direction. However, there are two shortcomings. On the one hand, it cannot identify the detail location of neighbors, and thus cannot keep the neighborhood structure well. On the other hand, the adjacency rela-tionship would be imbalanced, which may not achieve the goal of minimizing the inter-class scatter and maximizing the intra-class scatter. It is not useful for classification. In order to overcome the shortcomings of DNE, this paper proposes a novel supervised subspace learning method, called locality-balanced DNE (LBDNE). In LBDNE, the homogenous and heterogeneous adjacency graphs are constructed. By adjusting the value of control parameter, the intra-class and inter-class relations can be balanced effectively. This paper compares LBDNE with the other state-of-art methods for dimensionality reduction techniques on artificial dataset and real face datasets. The experi-mental results show the feasibility and effectiveness of LBDNE.