光谱学与光谱分析
光譜學與光譜分析
광보학여광보분석
SPECTROSCOPY AND SPECTRAL ANALYSIS
2014年
7期
1894-1897
,共4页
马鹏飞%陈良富%陶金花%苏林%陶明辉%王子峰%邹铭敏%张莹
馬鵬飛%陳良富%陶金花%囌林%陶明輝%王子峰%鄒銘敏%張瑩
마붕비%진량부%도금화%소림%도명휘%왕자봉%추명민%장형
CrIS%特征向量%非线性牛顿迭代%大气廓线%雅各比
CrIS%特徵嚮量%非線性牛頓迭代%大氣廓線%雅各比
CrIS%특정향량%비선성우돈질대%대기곽선%아각비
CrIS%Atmospheric profile%Eigenvector%Nonlinear newton iteration%Jacobian
大气温湿廓线是数值预报中最基本的气象参数,高光谱红外卫星可以观测到较高垂直分辨率的大气信息,为了准确获取廓线信息,利用搭载于美国对地观测卫星Suomi NPP(national polar-orbiting partner-ship)平台上的CrIS(cross-track infrared sounder)红外高光谱观测资料,讨论了通道选取方法,采用特征向量统计法反演法得到初始大气廓线,利用非线性牛顿迭代法进一步提高反演精度。将反演结果和全球数据同化系统GDAS(global data assimilation system )模式分析数据以及配对的无线探空值进行比较,发现反演结果与真值趋势一致,较之初始廓线有显著提高,在100~700 hPa之间,温度廓线反演精度最高,均方差小于1 K ,在300~900 hPa之间,湿度廓线反演精度最高,均方差小于20%,与所选取通道的雅各比峰值区间一致。
大氣溫濕廓線是數值預報中最基本的氣象參數,高光譜紅外衛星可以觀測到較高垂直分辨率的大氣信息,為瞭準確穫取廓線信息,利用搭載于美國對地觀測衛星Suomi NPP(national polar-orbiting partner-ship)平檯上的CrIS(cross-track infrared sounder)紅外高光譜觀測資料,討論瞭通道選取方法,採用特徵嚮量統計法反縯法得到初始大氣廓線,利用非線性牛頓迭代法進一步提高反縯精度。將反縯結果和全毬數據同化繫統GDAS(global data assimilation system )模式分析數據以及配對的無線探空值進行比較,髮現反縯結果與真值趨勢一緻,較之初始廓線有顯著提高,在100~700 hPa之間,溫度廓線反縯精度最高,均方差小于1 K ,在300~900 hPa之間,濕度廓線反縯精度最高,均方差小于20%,與所選取通道的雅各比峰值區間一緻。
대기온습곽선시수치예보중최기본적기상삼수,고광보홍외위성가이관측도교고수직분변솔적대기신식,위료준학획취곽선신식,이용탑재우미국대지관측위성Suomi NPP(national polar-orbiting partner-ship)평태상적CrIS(cross-track infrared sounder)홍외고광보관측자료,토론료통도선취방법,채용특정향량통계법반연법득도초시대기곽선,이용비선성우돈질대법진일보제고반연정도。장반연결과화전구수거동화계통GDAS(global data assimilation system )모식분석수거이급배대적무선탐공치진행비교,발현반연결과여진치추세일치,교지초시곽선유현저제고,재100~700 hPa지간,온도곽선반연정도최고,균방차소우1 K ,재300~900 hPa지간,습도곽선반연정도최고,균방차소우20%,여소선취통도적아각비봉치구간일치。
In order to get higher vertical resolution atmosphere profile information ,the present paper retrieves atmospheric tem-perature and moisture profiles from the Cross-track Infrared Sounder (CrIS) on the newly-launched Suomi National Polar-orbit-ing Partnership (Suomi NPP) and future Joint Polar Satellite System (JPSS) with a nonlinear Newton iteration method by using the profiles retrieved via statical regression method as the first guess ,and the issue of channel selection is discussed .The re-trieved profiles are compared with radiosonde observations ,and National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS) analyses show that the physical retrievals of temperature and moisture are in good agreement with the distributions from GDAS analysis fields and radiosonde observations ,and have a notable improvements of the atmos-pheric profile retrieval accuracy as compared with the eigenvector regression algorithm .For pressures between 200 and 700 hPa the accuracy is of the order of 1 K for the temperature profile ,and 20% for the relative humidity profile is consistent with the ja-cobian peaks of the selected channels .