电子与信息学报
電子與信息學報
전자여신식학보
JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY
2014年
7期
1525-1531
,共7页
苏伍各%王宏强%邓彬%秦玉亮%凌永顺
囌伍各%王宏彊%鄧彬%秦玉亮%凌永順
소오각%왕굉강%산빈%진옥량%릉영순
逆合成孔径雷达%计算机层析成像%稀疏贝叶斯学习%方差成分扩张压缩%稀疏恢复
逆閤成孔徑雷達%計算機層析成像%稀疏貝葉斯學習%方差成分擴張壓縮%稀疏恢複
역합성공경뢰체%계산궤층석성상%희소패협사학습%방차성분확장압축%희소회복
Inverse SAR (ISAR)%Computerized Tomography (CT)%Sparse Bayesian Learning (SBL)%Expansion-Compression Variance-component based method (ExCoV)%Sparse recover
基于贝叶斯框架下的稀疏重构方法,由于考虑了稀疏信号的先验信息以及测量过程中的加性噪声,因而能够更好地重建目标系数,然而传统的稀疏贝叶斯学习(SBL)算法参数多,时效性差。该文考虑一种新的稀疏贝叶斯学习方法方差成分扩张压缩(ExCoV),其不同于SBL中赋予所有的信号元素各自的方差分量参数,ExCoV方法仅仅赋予有重要意义的信号元素不同的方差分量,并拥有比SBL方法更少的参数。基于计算机层析成像技术框架下的ISAR成像模型,该文将ExCoV方法结合压缩感知(CS)理论将其进行ISAR成像,并从适用性和成像效果等方面与常用的极坐标格式算法(PFA),卷积逆投影算法(CBPA)和传统的稀疏重构算法进行比较,点目标仿真结果表明基于ExCoV的方法得到的ISAR像具有低旁瓣,高分辨率的特点,真实数据的成像结果表明该方法是一种比SBL更有效的ISAR成像算法。
基于貝葉斯框架下的稀疏重構方法,由于攷慮瞭稀疏信號的先驗信息以及測量過程中的加性譟聲,因而能夠更好地重建目標繫數,然而傳統的稀疏貝葉斯學習(SBL)算法參數多,時效性差。該文攷慮一種新的稀疏貝葉斯學習方法方差成分擴張壓縮(ExCoV),其不同于SBL中賦予所有的信號元素各自的方差分量參數,ExCoV方法僅僅賦予有重要意義的信號元素不同的方差分量,併擁有比SBL方法更少的參數。基于計算機層析成像技術框架下的ISAR成像模型,該文將ExCoV方法結閤壓縮感知(CS)理論將其進行ISAR成像,併從適用性和成像效果等方麵與常用的極坐標格式算法(PFA),捲積逆投影算法(CBPA)和傳統的稀疏重構算法進行比較,點目標倣真結果錶明基于ExCoV的方法得到的ISAR像具有低徬瓣,高分辨率的特點,真實數據的成像結果錶明該方法是一種比SBL更有效的ISAR成像算法。
기우패협사광가하적희소중구방법,유우고필료희소신호적선험신식이급측량과정중적가성조성,인이능구경호지중건목표계수,연이전통적희소패협사학습(SBL)산법삼수다,시효성차。해문고필일충신적희소패협사학습방법방차성분확장압축(ExCoV),기불동우SBL중부여소유적신호원소각자적방차분량삼수,ExCoV방법부부부여유중요의의적신호원소불동적방차분량,병옹유비SBL방법경소적삼수。기우계산궤층석성상기술광가하적ISAR성상모형,해문장ExCoV방법결합압축감지(CS)이론장기진행ISAR성상,병종괄용성화성상효과등방면여상용적겁좌표격식산법(PFA),권적역투영산법(CBPA)화전통적희소중구산법진행비교,점목표방진결과표명기우ExCoV적방법득도적ISAR상구유저방판,고분변솔적특점,진실수거적성상결과표명해방법시일충비SBL경유효적ISAR성상산법。
By taking into account of the prior information of the sparse signal and the additive noise encountered in the measurement process, the sparse recover algorithm under the Bayesian framework can reconstruct the coefficient better. However, the traditional Sparse Bayesian Learning (SBL) algorithm holds many parameters and its timeliness is poor. In this paper, a new sparse Bayesian learning algorithm named Expansion-Compression Variance-component based method (ExCoV) is considered, which only endows a different variance-component to the significant signal elements. Unlikely, the SBL has a distinct variance component on the all signal elements. In addition, the ExCoV has much less parameters than the SBL. Combined with the Compress Sensing (CS) theory, the ExCoV is used in the ISAR imaging model under the Computerized Tomography (CT) frame, and its applicability and the imaging quality are compared with the Polar Format Algorithm (PFA), Convolution Back Projection Algorithm (CBPA) and the traditional sparse recover algorithm. The point scatter simulation verifies that the Inverse SAR (ISAR) image obtained by the ExCoV has low sidelobe and high resolution, and is not sensitive to noise. The imaging results of real data show that the ExCoV has more sparse ISAR image, indicating that it is a more effective and potential ISAR imaging algorithm.