电机与控制学报
電機與控製學報
전궤여공제학보
ECTRIC MACHINES AND CONTROL
2014年
7期
113-118
,共6页
张怡卓%许雷%丁亮%曹军
張怡卓%許雷%丁亮%曹軍
장이탁%허뢰%정량%조군
实木地板%缺陷检测%图像融合%小波变换%禁忌搜索
實木地闆%缺陷檢測%圖像融閤%小波變換%禁忌搜索
실목지판%결함검측%도상융합%소파변환%금기수색
wood floor%defect detection%image fusion%wavelet transform%taboo search
针对实木地板表面缺陷检测速度慢、精确度低的问题,设计了实木地板视觉检测分选系统,并提出一种基于图像融合的区域生长分割方法。分割方法首先提取缺陷的R分量图像并进行图像缩小,在低维图像空间内运用区域生长方法完成缺陷的快速定位;利用梯度信息插值对缩小图像进行放大复原,并对缺陷进行标记生成参考图像;应用小波变换检索标记参考图像的边缘,以边缘像素点为种子在原图像进行禁忌快速搜索,实现缺陷区域的快速、精准分割。对20幅含有活节、死节、裂纹的样本图像进行了缺陷在线测试,平均分割时间为13.21 ms,缺陷分割区域的准确率达到96.8%。
針對實木地闆錶麵缺陷檢測速度慢、精確度低的問題,設計瞭實木地闆視覺檢測分選繫統,併提齣一種基于圖像融閤的區域生長分割方法。分割方法首先提取缺陷的R分量圖像併進行圖像縮小,在低維圖像空間內運用區域生長方法完成缺陷的快速定位;利用梯度信息插值對縮小圖像進行放大複原,併對缺陷進行標記生成參攷圖像;應用小波變換檢索標記參攷圖像的邊緣,以邊緣像素點為種子在原圖像進行禁忌快速搜索,實現缺陷區域的快速、精準分割。對20幅含有活節、死節、裂紋的樣本圖像進行瞭缺陷在線測試,平均分割時間為13.21 ms,缺陷分割區域的準確率達到96.8%。
침대실목지판표면결함검측속도만、정학도저적문제,설계료실목지판시각검측분선계통,병제출일충기우도상융합적구역생장분할방법。분할방법수선제취결함적R분량도상병진행도상축소,재저유도상공간내운용구역생장방법완성결함적쾌속정위;이용제도신식삽치대축소도상진행방대복원,병대결함진행표기생성삼고도상;응용소파변환검색표기삼고도상적변연,이변연상소점위충자재원도상진행금기쾌속수색,실현결함구역적쾌속、정준분할。대20폭함유활절、사절、렬문적양본도상진행료결함재선측시,평균분할시간위13.21 ms,결함분할구역적준학솔체도96.8%。
The surface defects of wood floor directly influence its quality and sorting levels. To solve the problem of slow speed and low accuracy of defects segmentation methods, a fast visual sorting system was designed and a novel segmenting method based on image fusion was proposed. R component image was extracted first and scaling methods were applied to the image. Defects were rapidly located through region growing algorithms in low-dimensional space. Then gradient interpolation method was used to restore the image, and defects were marked to generate the reference image. The wavelet transform was used to iden-tify the margin of the reference image. Finally, dual-threshold growth criterions and taboo table of rapidly located defects were set up to complete the taboo search from the margin of rapidly located region to the outside. The result of the experiment made on 20 sample images with sound knots, dead knots and cracks revealed that the average segmentation time of this method is 13. 21ms, and the accuracy of defect seg-mentation is 96. 8%.