伊犁师范学院学报(自然科学版)
伊犛師範學院學報(自然科學版)
이리사범학원학보(자연과학판)
JOURNAL OF ILI NORMAL UNIVERSITY
2014年
2期
1-5
,共5页
分数阶微分方程%凝聚映射%非紧性测度%不动点定理
分數階微分方程%凝聚映射%非緊性測度%不動點定理
분수계미분방정%응취영사%비긴성측도%불동점정리
fractional differential equation%condensing mapping%noncompactness measure%fixed point
考虑Banach空间中分数阶微分方程多点边值问题解的存在性,用新的非紧性测度估计技巧,在函数满足比较一般的增长条件和非紧性测度条件下,通过凝聚映射不动点定理获得边值问题解的存在性。
攷慮Banach空間中分數階微分方程多點邊值問題解的存在性,用新的非緊性測度估計技巧,在函數滿足比較一般的增長條件和非緊性測度條件下,通過凝聚映射不動點定理穫得邊值問題解的存在性。
고필Banach공간중분수계미분방정다점변치문제해적존재성,용신적비긴성측도고계기교,재함수만족비교일반적증장조건화비긴성측도조건하,통과응취영사불동점정리획득변치문제해적존재성。
Theexistence of solutions for multiple-point boundary value problem of fractional differential equations in a Banach space was considered. Since a new estimation technique of noncompactness measure was introduced, under more general conditions of growth and noncompachness measure, the existence of solutions was obtained by using the fixed point theorem of condensing mappings.