太原科技大学学报
太原科技大學學報
태원과기대학학보
JOURNAL OF TAIYUAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
2014年
4期
318-321
,共4页
无三角图%边连通度%限制边连通度
無三角圖%邊連通度%限製邊連通度
무삼각도%변련통도%한제변련통도
Triangle-free graphs%edge connectivity%restricted edge connectivity
设S是连通图G的一个边割。若G-S不包含孤立点,则称S是G的一个限制边割。图G的最小限制边割的边数称为G的限制边连通度,记为λ'( G).如果图G的限制边连通度等于其最小度,则称图G是最优限制边连通的,简称λ'-最优的。设G是一个n阶的连通无三角图,且最小度δ(G)≥2.文章证明了,若最小边度ξ(G)≥ n2(-2)(1+(δ G1)-1),则G是λ'-最优的。并由此推出,若连通无三角图G的最小度δ(G)≥ n4+1,则G是λ'-最优的。最后给出例子说明这些结果给出的边界都是紧的。
設S是連通圖G的一箇邊割。若G-S不包含孤立點,則稱S是G的一箇限製邊割。圖G的最小限製邊割的邊數稱為G的限製邊連通度,記為λ'( G).如果圖G的限製邊連通度等于其最小度,則稱圖G是最優限製邊連通的,簡稱λ'-最優的。設G是一箇n階的連通無三角圖,且最小度δ(G)≥2.文章證明瞭,若最小邊度ξ(G)≥ n2(-2)(1+(δ G1)-1),則G是λ'-最優的。併由此推齣,若連通無三角圖G的最小度δ(G)≥ n4+1,則G是λ'-最優的。最後給齣例子說明這些結果給齣的邊界都是緊的。
설S시련통도G적일개변할。약G-S불포함고립점,칙칭S시G적일개한제변할。도G적최소한제변할적변수칭위G적한제변련통도,기위λ'( G).여과도G적한제변련통도등우기최소도,칙칭도G시최우한제변련통적,간칭λ'-최우적。설G시일개n계적련통무삼각도,차최소도δ(G)≥2.문장증명료,약최소변도ξ(G)≥ n2(-2)(1+(δ G1)-1),칙G시λ'-최우적。병유차추출,약련통무삼각도G적최소도δ(G)≥ n4+1,칙G시λ'-최우적。최후급출례자설명저사결과급출적변계도시긴적。
An edge cut S of a connected graph G is called as a restricted edge cut,if G-S contains unisolated verti-ces. The minimum cardinality of all restricted edge cuts is called as the restricted edge connectivity of λ'( G). A graph G is optimally restricted edge-connected,for shortλ'-optimal,ifλ'( G)=ξ( G),whereξ( G)is the minimum edge degree of G. A graph is thought to be super-restricted edge-connected,for short super-λ' if every minimum re-stricted edge cut isolates an edge. Let G be a connected triangle-free graph of order n and minimum degree δ( G≥2),if the minimum edge degree ξ(G)≥ n( 2-2) 1+(δ 1G)-( 1),then G is λ'-optimal. Using this result,we deduce that if the minimum degree of triangle-free graph G,δ( G)≥n4 +1,then G is λ'-optimal. Finally,an example is presented to show that the bounds of these results are both tight.