光电工程
光電工程
광전공정
OPTO-ELECTRONIC ENGINEERING
2014年
7期
50-56
,共7页
刘琳%耿俊梅%顾国华%钱惟贤%徐富元
劉琳%耿俊梅%顧國華%錢惟賢%徐富元
류림%경준매%고국화%전유현%서부원
均值漂移%头肩轮廓提取%PCA傅里叶描述子%神经网络%人体检测
均值漂移%頭肩輪廓提取%PCA傅裏葉描述子%神經網絡%人體檢測
균치표이%두견륜곽제취%PCA부리협묘술자%신경망락%인체검측
mean shift%head-shoulder contour extraction%PCA Fourier descriptors%neural network%human detection
传统的基于方向梯度直方图与支持向量机的行人检测方法运算量大,针对这一问题,本文从轮廓特征的角度出发,提出了头肩轮廓特征与神经网络相结合的检测方法。该方法根据人体头肩模型具有相对稳定性,且轮廓特征可以作为人体识别的依据,采用边缘检测与均值漂移相结合的方式提取人体轮廓,采用经PCA降维的傅里叶描述子提取轮廓特征,结合神经网络分类器完成初次人体识别。采用 RGB 头发模型和均值漂移方法,对遮挡情况下被判别为非人体的目标图像做进一步处理,聚类出多个人体头肩模型,重新参与分类。实验结果表明,本方法人体检测的准确率和检测速度与现有的算法相比都有所提高,且克服了遮挡情况下人体头肩模型提取错误的弊端,提高了人体检测的识别率和应用范围。
傳統的基于方嚮梯度直方圖與支持嚮量機的行人檢測方法運算量大,針對這一問題,本文從輪廓特徵的角度齣髮,提齣瞭頭肩輪廓特徵與神經網絡相結閤的檢測方法。該方法根據人體頭肩模型具有相對穩定性,且輪廓特徵可以作為人體識彆的依據,採用邊緣檢測與均值漂移相結閤的方式提取人體輪廓,採用經PCA降維的傅裏葉描述子提取輪廓特徵,結閤神經網絡分類器完成初次人體識彆。採用 RGB 頭髮模型和均值漂移方法,對遮擋情況下被判彆為非人體的目標圖像做進一步處理,聚類齣多箇人體頭肩模型,重新參與分類。實驗結果錶明,本方法人體檢測的準確率和檢測速度與現有的算法相比都有所提高,且剋服瞭遮擋情況下人體頭肩模型提取錯誤的弊耑,提高瞭人體檢測的識彆率和應用範圍。
전통적기우방향제도직방도여지지향량궤적행인검측방법운산량대,침대저일문제,본문종륜곽특정적각도출발,제출료두견륜곽특정여신경망락상결합적검측방법。해방법근거인체두견모형구유상대은정성,차륜곽특정가이작위인체식별적의거,채용변연검측여균치표이상결합적방식제취인체륜곽,채용경PCA강유적부리협묘술자제취륜곽특정,결합신경망락분류기완성초차인체식별。채용 RGB 두발모형화균치표이방법,대차당정황하피판별위비인체적목표도상주진일보처리,취류출다개인체두견모형,중신삼여분류。실험결과표명,본방법인체검측적준학솔화검측속도여현유적산법상비도유소제고,차극복료차당정황하인체두견모형제취착오적폐단,제고료인체검측적식별솔화응용범위。
The traditional method based on the histogram of oriented gradients and Support Vector Machine causes large amount of computation. To deal with the problem, a novel method called the contour feature of head-shoulders combined with neural network is proposed. The head-shoulder model is relatively stable and the contour feature can be used as a basis for human identification. There are two main parts in the paper. Firstly, the head-shoulder model was extracted by edge detection and mean shift algorithm. Then Fourier descriptors with PCA dimensionality reduction were calculated according to contours of the head-shoulder model. Combined with neural network classifier, the initial human identification was completed. Secondly, several models of human head-shoulders from aim pictures which have been identified as non-person with RGB hair mode and the mean-shift algorithm were clustered and classified them again. The experiment result shows that, the detection accuracy and speed are improved compared with the conventional algorithms, and it performances well when shelters occur.