微电机
微電機
미전궤
MICROMOTORS SERVO TECHNIQUE
2014年
9期
60-63,75
,共5页
永磁直线同步电机%复合前馈PID%遗传优化神经网络%干扰抑制
永磁直線同步電機%複閤前饋PID%遺傳優化神經網絡%榦擾抑製
영자직선동보전궤%복합전궤PID%유전우화신경망락%간우억제
permanent magnet linear synchronous motor%feed-forward plus PID control%neutral network optimized by genetic algorithm%reduce disturbances
针对永磁直线同步电机的跟踪性能易受推力波动等干扰影响的问题,以及BP神经网络收敛速度慢和易于陷入极小值的问题,提出了基于遗传优化神经网络的控制方法。该算法在复合前馈PID控制算法的基础上,将遗传算法全局寻优和BP神经网络局部寻优相结合,利用神经网络实现了对永磁直线同步电机的干扰的快速,准确的在线补偿。实验结果表明,与复合前馈PID控制方法和神经网络控制方法相比,基于遗传优化神经网络的控制方法有效的提高了系统的跟踪性和鲁棒性,并能有效的消除干扰对系统的影响。
針對永磁直線同步電機的跟蹤性能易受推力波動等榦擾影響的問題,以及BP神經網絡收斂速度慢和易于陷入極小值的問題,提齣瞭基于遺傳優化神經網絡的控製方法。該算法在複閤前饋PID控製算法的基礎上,將遺傳算法全跼尋優和BP神經網絡跼部尋優相結閤,利用神經網絡實現瞭對永磁直線同步電機的榦擾的快速,準確的在線補償。實驗結果錶明,與複閤前饋PID控製方法和神經網絡控製方法相比,基于遺傳優化神經網絡的控製方法有效的提高瞭繫統的跟蹤性和魯棒性,併能有效的消除榦擾對繫統的影響。
침대영자직선동보전궤적근종성능역수추력파동등간우영향적문제,이급BP신경망락수렴속도만화역우함입겁소치적문제,제출료기우유전우화신경망락적공제방법。해산법재복합전궤PID공제산법적기출상,장유전산법전국심우화BP신경망락국부심우상결합,이용신경망락실현료대영자직선동보전궤적간우적쾌속,준학적재선보상。실험결과표명,여복합전궤PID공제방법화신경망락공제방법상비,기우유전우화신경망락적공제방법유효적제고료계통적근종성화로봉성,병능유효적소제간우대계통적영향。
For the tracking performance of permanent magnet linear synchronous motor influenced by force ripple and other disturbances , and the BP neural network converges slowly and easily gets in the local mini-mum, a method of control based on neutral network optimized by genetic algorithm was proposed.This scheme combined the general optimization of the genetic algorithm together with the local optimization of BP neural network on the basis of feed-forward plus PID control.A neutral network was used to estimate the dis-turbances.The experimental results show the efficiency of the proposed method , compared with combined feed-forward plus PID control and neural network.The proposed method can improve tracking precision and robustness , and reduce the influence of disturbances.