模式识别与人工智能
模式識彆與人工智能
모식식별여인공지능
Moshi Shibie yu Rengong Zhineng
2014年
9期
802-807
,共6页
判别分析%空间结构信息%空间平滑%平均散度%特征值优化
判彆分析%空間結構信息%空間平滑%平均散度%特徵值優化
판별분석%공간결구신식%공간평활%평균산도%특정치우화
DiscriminantAnalysis%SpatialStructureInformation%SpatiallySmooth%AverageScatter%Eigenvalue Optimization
空间平滑的线性判别分析( SLDA)和基于空间平滑欧氏距离的线性判别分析( IMEDA)是目前结合图像特有的空间结构信息进行图像判别降维的两种主要方法,具有比线性判别分析( LDA)更显著的分类效果.与SLDA和IMEDA不同,文中通过参数化投影方向,约束平均类内散度(或紧性)上界和最大化最坏类间散度(或分离度),产生的降维算法分别称为WSLDA和WIMEDA.它们的求解最终可归结为简单的特征值优化问题,避免使用完整特征值分解的缺点.在Yale、AR和FERET标准人脸集上的实验验证它们的有效性.
空間平滑的線性判彆分析( SLDA)和基于空間平滑歐氏距離的線性判彆分析( IMEDA)是目前結閤圖像特有的空間結構信息進行圖像判彆降維的兩種主要方法,具有比線性判彆分析( LDA)更顯著的分類效果.與SLDA和IMEDA不同,文中通過參數化投影方嚮,約束平均類內散度(或緊性)上界和最大化最壞類間散度(或分離度),產生的降維算法分彆稱為WSLDA和WIMEDA.它們的求解最終可歸結為簡單的特徵值優化問題,避免使用完整特徵值分解的缺點.在Yale、AR和FERET標準人臉集上的實驗驗證它們的有效性.
공간평활적선성판별분석( SLDA)화기우공간평활구씨거리적선성판별분석( IMEDA)시목전결합도상특유적공간결구신식진행도상판별강유적량충주요방법,구유비선성판별분석( LDA)경현저적분류효과.여SLDA화IMEDA불동,문중통과삼수화투영방향,약속평균류내산도(혹긴성)상계화최대화최배류간산도(혹분리도),산생적강유산법분별칭위WSLDA화WIMEDA.타문적구해최종가귀결위간단적특정치우화문제,피면사용완정특정치분해적결점.재Yale、AR화FERET표준인검집상적실험험증타문적유효성.
Spatially Smooth Linear Discriminant Analysis( SLDA) and IMage Euclidean Distance Discriminant Analysis( IMEDA) combined with spatial structure information of the images are two main discriminant methods to reduce dimension, and the classification performance of SLDA and IMEDA is better than that of LDA. Different from SLDA and IMEDA, the solutions in the proposed algorithms called WSLDA and WIMEDA are obtained by parameterizing projection directions, maintaining an upper bound for average within-class scatter and maximizing the minimal between-class scatter. Also their solution can simply be attributed to solve a well-known eigenvalue optimization problem called minimization for the maximal eigenvalue of a symmetric matrix. It overcomes the shortcoming that many algorithms need to use full eigenvalue decomposition. In addition, experiments on standard face dataset Yale、AR and FERET validate the effectiveness of WSLDA and WIMEDA.