计算机与数字工程
計算機與數字工程
계산궤여수자공정
COMPUTER & DIGITAL ENGINEERING
2014年
6期
976-979,1062
,共5页
聂凯%孟令晶%李冬
聶凱%孟令晶%李鼕
섭개%맹령정%리동
多目标优化%分布估计算法%独立成分分析方法%NSGA-Ⅱ
多目標優化%分佈估計算法%獨立成分分析方法%NSGA-Ⅱ
다목표우화%분포고계산법%독립성분분석방법%NSGA-Ⅱ
multiobjective optimization%estimation of distribution algorithm (EDA )%independent component analysis (ICA)%NSGA-Ⅱ
针对复杂的强耦合、非线性连续多目标优化问题,提出了一种基于独立成分分析方法(IC A )的多目标分布估计算法。假设其概率图模型为非高斯的,采用ICA进行分离产生独立的各分量,接着采用基于拥挤距离排序和NSGA-Ⅱ的非支配排序,选择出优秀个体作为新的种群。与多目标ICA-UMDA 和vbICA-MM 的比较实验表明,该算法在测试函数ZDT2-2、ZDT4-2、ZDT6-2和F5上获得的Pareto解集具有较好的收敛性与多样性,且数据没有服从高斯分布的限制。
針對複雜的彊耦閤、非線性連續多目標優化問題,提齣瞭一種基于獨立成分分析方法(IC A )的多目標分佈估計算法。假設其概率圖模型為非高斯的,採用ICA進行分離產生獨立的各分量,接著採用基于擁擠距離排序和NSGA-Ⅱ的非支配排序,選擇齣優秀箇體作為新的種群。與多目標ICA-UMDA 和vbICA-MM 的比較實驗錶明,該算法在測試函數ZDT2-2、ZDT4-2、ZDT6-2和F5上穫得的Pareto解集具有較好的收斂性與多樣性,且數據沒有服從高斯分佈的限製。
침대복잡적강우합、비선성련속다목표우화문제,제출료일충기우독립성분분석방법(IC A )적다목표분포고계산법。가설기개솔도모형위비고사적,채용ICA진행분리산생독립적각분량,접착채용기우옹제거리배서화NSGA-Ⅱ적비지배배서,선택출우수개체작위신적충군。여다목표ICA-UMDA 화vbICA-MM 적비교실험표명,해산법재측시함수ZDT2-2、ZDT4-2、ZDT6-2화F5상획득적Pareto해집구유교호적수렴성여다양성,차수거몰유복종고사분포적한제。
Multiobjective estimation of distribution algorithm based on independent component analysis(ICA-MOEDA) is proposed for solving multiobjective optimization problems .The non-Gaussian probabilistic graphical model is introduced in the nonlinear variable linkage continuous optimization problems .Then the ICA model is performed on the parent population to get the new independent population which is clustered .The selection procedure is based on the non-dominated sorting of NSGA-Ⅱ and crowding distance which choose the best offspring enter next generation .Compared with other two evolution-ary multiobjective algorithms ,simulation results show that the improvement algorithm has good convergence and diversity performance on ZDT2-2 ,ZDT4-2 ,ZDT6-2 and F5 benchmark instances and the variables are not required to subject to Gaussian distribution .