化工学报
化工學報
화공학보
JOURNAL OF CHEMICAL INDUSY AND ENGINEERING (CHINA)
2014年
7期
2802-2808
,共7页
多期供应链%生物燃料%生命周期评价%供应链模型%多目标优化
多期供應鏈%生物燃料%生命週期評價%供應鏈模型%多目標優化
다기공응련%생물연료%생명주기평개%공응련모형%다목표우화
multi-period supply chain%biofuel%LCA%supply chain model%multi-objective optimization
建立了一个基于多目标优化以及生命周期评价(LCA)的多期生物燃料供应链模型。该模型的3个目标函数分别为总折现利润、平均单位能量生物燃料的温室气体排放和化石能源投入(economic, energy, environmental,3E)。为了将生物质生产的季节性以及库存等问题引入模型中,需要对每年进行多期划分。考虑到需要进一步引入供应链的扩张,模型的时间跨度设定为3年。此外,该模型还考虑了生物质产地、工厂,生物燃料市场的选址以及各节点间的物流流量等问题。通过将非线性的后两个目标函数利用ε-constraint法转化为线性约束条件,该模型最终被转化为混合整数线性规划(MILP)问题并得以求解。对解得的非劣解在三维坐标系上线性插值可得非劣解所在曲面,它揭示了3E目标之间的权衡取舍关系。还使用了一个基于中国国情的数据的案例对该模型进行检验。
建立瞭一箇基于多目標優化以及生命週期評價(LCA)的多期生物燃料供應鏈模型。該模型的3箇目標函數分彆為總摺現利潤、平均單位能量生物燃料的溫室氣體排放和化石能源投入(economic, energy, environmental,3E)。為瞭將生物質生產的季節性以及庫存等問題引入模型中,需要對每年進行多期劃分。攷慮到需要進一步引入供應鏈的擴張,模型的時間跨度設定為3年。此外,該模型還攷慮瞭生物質產地、工廠,生物燃料市場的選阯以及各節點間的物流流量等問題。通過將非線性的後兩箇目標函數利用ε-constraint法轉化為線性約束條件,該模型最終被轉化為混閤整數線性規劃(MILP)問題併得以求解。對解得的非劣解在三維坐標繫上線性插值可得非劣解所在麯麵,它揭示瞭3E目標之間的權衡取捨關繫。還使用瞭一箇基于中國國情的數據的案例對該模型進行檢驗。
건립료일개기우다목표우화이급생명주기평개(LCA)적다기생물연료공응련모형。해모형적3개목표함수분별위총절현리윤、평균단위능량생물연료적온실기체배방화화석능원투입(economic, energy, environmental,3E)。위료장생물질생산적계절성이급고존등문제인입모형중,수요대매년진행다기화분。고필도수요진일보인입공응련적확장,모형적시간과도설정위3년。차외,해모형환고필료생물질산지、공엄,생물연료시장적선지이급각절점간적물류류량등문제。통과장비선성적후량개목표함수이용ε-constraint법전화위선성약속조건,해모형최종피전화위혼합정수선성규화(MILP)문제병득이구해。대해득적비렬해재삼유좌표계상선성삽치가득비렬해소재곡면,타게시료3E목표지간적권형취사관계。환사용료일개기우중국국정적수거적안례대해모형진행검험。
This paper presents a life cycle assessment (LCA) based multi-period and multi-objective biofuel supply chain model. The objective functions are total discounted profit, average fossil energy input per MJ biofuel and average greenhouse gases emission per MJ biofuel (economic, energy, environmental, 3E). Considering seasonal factor and storage problem, a multi-period model was required. Furthermore, to investigate the expansion of the supply chain, the time span of the model was set to be 3 years. The locations of biomass feedstock, biofuel factories and markets were considered as decision variables in the model. The non-linear objective functions were transformed into linear constraints by using theε-constraint method. After that, the model was solved as a MILP problem. A surface of the Pareto optimal solutions was obtained by linearly interpolating the non-inferior solutions. The surface revealed the tradeoff among 3E objectives. In the case study, this model was used to design an experimental biofuel supply chain for China.