国土资源遥感
國土資源遙感
국토자원요감
REMOTE SENSING FOR LAND & RESOURCES
2014年
3期
31-36
,共6页
喻亮%李婷%詹庆明%于坤
喻亮%李婷%詹慶明%于坤
유량%리정%첨경명%우곤
激光扫描( LiDAR)%点云分割%欧几里德空间
激光掃描( LiDAR)%點雲分割%歐幾裏德空間
격광소묘( LiDAR)%점운분할%구궤리덕공간
light detection and ranging ( LiDAR)%point cloud segmentation%Euclidean Space
点云数据分割是对激光扫描( LiDAR)场景进行三维重建的基础。针对现有基于边界、表面或聚类的点云分割方法中存在的分割不足或过度分割问题,提出了一种基于多维欧几里德空间相似度的点云数据分割方法。通过计算激光点的法向量,结合点云的光谱特征进行数学变换,计算激光点在多维空间中的欧氏距离,比较邻近点间的相似性,最终完成对激光点云数据的分割。该方法解决了常用点云分割中几何特征和光谱特征无法同时使用的问题,融合了几何分割和颜色分割的两方面优势,提高了点云分割精度。采用2组数据分别比较了基于几何特征、光谱特征和多维空间相似度的3种不同分割算法的分割结果,实验结果验证了该方法的可行性和实用性。
點雲數據分割是對激光掃描( LiDAR)場景進行三維重建的基礎。針對現有基于邊界、錶麵或聚類的點雲分割方法中存在的分割不足或過度分割問題,提齣瞭一種基于多維歐幾裏德空間相似度的點雲數據分割方法。通過計算激光點的法嚮量,結閤點雲的光譜特徵進行數學變換,計算激光點在多維空間中的歐氏距離,比較鄰近點間的相似性,最終完成對激光點雲數據的分割。該方法解決瞭常用點雲分割中幾何特徵和光譜特徵無法同時使用的問題,融閤瞭幾何分割和顏色分割的兩方麵優勢,提高瞭點雲分割精度。採用2組數據分彆比較瞭基于幾何特徵、光譜特徵和多維空間相似度的3種不同分割算法的分割結果,實驗結果驗證瞭該方法的可行性和實用性。
점운수거분할시대격광소묘( LiDAR)장경진행삼유중건적기출。침대현유기우변계、표면혹취류적점운분할방법중존재적분할불족혹과도분할문제,제출료일충기우다유구궤리덕공간상사도적점운수거분할방법。통과계산격광점적법향량,결합점운적광보특정진행수학변환,계산격광점재다유공간중적구씨거리,비교린근점간적상사성,최종완성대격광점운수거적분할。해방법해결료상용점운분할중궤하특정화광보특정무법동시사용적문제,융합료궤하분할화안색분할적량방면우세,제고료점운분할정도。채용2조수거분별비교료기우궤하특정、광보특정화다유공간상사도적3충불동분할산법적분할결과,실험결과험증료해방법적가행성화실용성。
The segmentation of LiDAR point cloud is a basic and key step in 3D reconstruction of architecture. Some problems such as under-segmentation or over-segmentation exist in current point cloud segmentation based on boundary, surface or clustering method. In this paper, a point data segmentation method based on similarity measures in multi-dimension Euclidean Space( SMMES) is presented. The main workflow of this method consists of calculating point normal vector, transforming the raw data combined with image features, calculating Euclidean distance in the multi-dimension space, comparing the similarity between the adjacent points,and segmenting the point data. The method proposed in this paper has solved the problem that geometry and spectral features cannot be used in parallel during the point cloud segmentation. In addition, it has the advantages of both geo -metrical segmentation and color-metrical segmentation, and can improve the accuracy of the point cloud segmentation. The segmentation results of the three different methods which are based on geometry features, spectral features and SMMES respectively were compared with each other by using two sets of data, and the experimental results show that the proposed method is significantly feasible and practical.