控制理论与应用
控製理論與應用
공제이론여응용
CONTROL THEORY & APPLICATIONS
2014年
6期
764-772
,共9页
线性最优估值器%随机不确定系统%乘性噪声%丢包%稳态估计
線性最優估值器%隨機不確定繫統%乘性譟聲%丟包%穩態估計
선성최우고치기%수궤불학정계통%승성조성%주포%은태고계
linear optimal estimator%stochastic uncertain system%multiplicative noise%packet loss%steady-state estima-tor
研究了具有数据包丢失和随机不确定性离散随机线性系统的状态估计问题。其中数据包丢失是随机的,且满足Bernoulli分布,系统矩阵中的随机不确定性由一个白色乘性噪声来描述。首先,通过配方方法,提出了最小均方意义下的无偏最优线性递推满阶滤波器。所提出的滤波器用到了当前时刻和最近时刻接收到的观测来保证线性最优性。与多项式滤波和增广滤波器相比,本文的滤波器具有较小的计算负担。然后,基于所获得的线性滤波器推导了线性最优预报器和平滑器。进一步研究了线性最优估值器的渐近稳定性,给出了稳态特性存在的一个充分条件。最后,通过两个仿真例子验证了所提估计算法的优越性。
研究瞭具有數據包丟失和隨機不確定性離散隨機線性繫統的狀態估計問題。其中數據包丟失是隨機的,且滿足Bernoulli分佈,繫統矩陣中的隨機不確定性由一箇白色乘性譟聲來描述。首先,通過配方方法,提齣瞭最小均方意義下的無偏最優線性遞推滿階濾波器。所提齣的濾波器用到瞭噹前時刻和最近時刻接收到的觀測來保證線性最優性。與多項式濾波和增廣濾波器相比,本文的濾波器具有較小的計算負擔。然後,基于所穫得的線性濾波器推導瞭線性最優預報器和平滑器。進一步研究瞭線性最優估值器的漸近穩定性,給齣瞭穩態特性存在的一箇充分條件。最後,通過兩箇倣真例子驗證瞭所提估計算法的優越性。
연구료구유수거포주실화수궤불학정성리산수궤선성계통적상태고계문제。기중수거포주실시수궤적,차만족Bernoulli분포,계통구진중적수궤불학정성유일개백색승성조성래묘술。수선,통과배방방법,제출료최소균방의의하적무편최우선성체추만계려파기。소제출적려파기용도료당전시각화최근시각접수도적관측래보증선성최우성。여다항식려파화증엄려파기상비,본문적려파기구유교소적계산부담。연후,기우소획득적선성려파기추도료선성최우예보기화평활기。진일보연구료선성최우고치기적점근은정성,급출료은태특성존재적일개충분조건。최후,통과량개방진례자험증료소제고계산법적우월성。
We investigate the state estimation problem for discrete-time stochastic linear systems with packet losses and stochastic uncertainties. Packet losses are random with Bernoulli distribution, and the stochastic uncertainties in system matrix are represented by white multiplicative noises. Firstly, the unbiased optimal linear recursive full-order filters in the least-mean-squares (LMS) sense are designed via the method of completing square. The proposed filters employ the measurements received at the present instant and the last instant to guarantee the linear optimality. It is shown that the derived linear filters have less computational burden when compared with polynomial filters and augmented filters. Then, the linear optimal predictor and smoother are also given on the basis of the linear filters. Further, the asymptotic stability of the linear optimal estimators is studied. A sufficient condition to guarantee the steady-state property is obtained. Finally, we use two simulation examples to demonstrate the advantages of the derived estimation algorithms.