控制理论与应用
控製理論與應用
공제이론여응용
CONTROL THEORY & APPLICATIONS
2014年
6期
741-747
,共7页
神经网络%模型预测控制%优化%初值问题
神經網絡%模型預測控製%優化%初值問題
신경망락%모형예측공제%우화%초치문제
neural networks%model predictive control%optimization%initial value problems
为解决局部优化算法初值选取不当造成神经网络预测控制性能下降的问题,本文提出了一种动态确定初值的方法。在每次优化时通过逆网络将初值选在输出误差最小点,通过修正目标性能函数中的权重因子来确保初值与当前控制量之间存在极值,并在理论上进行了证明。以BP神经网络预测控制为例,采用牛顿拉夫逊算法实现滚动优化,对所提方法进行了仿真实验,结果表明能够解决初值问题,提高控制系统的可靠性。
為解決跼部優化算法初值選取不噹造成神經網絡預測控製性能下降的問題,本文提齣瞭一種動態確定初值的方法。在每次優化時通過逆網絡將初值選在輸齣誤差最小點,通過脩正目標性能函數中的權重因子來確保初值與噹前控製量之間存在極值,併在理論上進行瞭證明。以BP神經網絡預測控製為例,採用牛頓拉伕遜算法實現滾動優化,對所提方法進行瞭倣真實驗,結果錶明能夠解決初值問題,提高控製繫統的可靠性。
위해결국부우화산법초치선취불당조성신경망락예측공제성능하강적문제,본문제출료일충동태학정초치적방법。재매차우화시통과역망락장초치선재수출오차최소점,통과수정목표성능함수중적권중인자래학보초치여당전공제량지간존재겁치,병재이론상진행료증명。이BP신경망락예측공제위례,채용우돈랍부손산법실현곤동우화,대소제방법진행료방진실험,결과표명능구해결초치문제,제고공제계통적가고성。
To deal with the performance degradation caused by improper initial values in neural network local optimiza-tion predictive control, we propose a method to dynamically determine the initial values. In each optimization cycle the minimum output error point is selected by calculating the inverse neural network. The existence of the minimal value of the objective function between this point and the current control point can be ensured and proved through modifying the weighting factor. Finally, a simulation experiment is carried out to verify the proposed method using a back propagation (BP) neural network as the predictive model, and the Newton-Raphson algorithm is employed as the receding horizon op-timization strategy. The results show that the initial value problem can be solved to improve the reliability of the control system.