中国组织工程研究
中國組織工程研究
중국조직공정연구
Journal of Clinical Rehabilitative Tissue Engineering Research
2014年
27期
4339-4344
,共6页
实验动物%组织构建%口腔生物材料%镍钛螺簧%正畸牙移动%正畸力%螺旋弹簧%第一磨牙
實驗動物%組織構建%口腔生物材料%鎳鈦螺簧%正畸牙移動%正畸力%螺鏇彈簧%第一磨牙
실험동물%조직구건%구강생물재료%얼태라황%정기아이동%정기력%라선탄황%제일마아
biocompatible materials%orthodontic anchorage%molar%models,animal
背景:在有关正畸牙移动的实验中,动物模型的建立是关键,其中力值的选择、支抗的控制对实验结果的影响很大。<br> 目的:在综合考虑各种因素的情况下,建立一个较完善的正畸牙移动动物模型。<br> 方法:在20只Wistar大鼠上颌两个切牙牙根中部水平钻洞,用0.3 mm直径结扎丝从洞中穿过,将牙槽骨、两个切牙结扎在一起,将右上颌第一磨牙以0.2 mm直径结扎丝结扎,随机分为4组,在切牙和第一磨牙间分别置10,25,50 g Sental oy镍钛螺簧,以切牙为支抗,拉第一磨牙向近中移动,以不加力的为对照组。加力后14 d苏木精-伊红染色观察第一磨牙牙体牙髓变化,并使用软件测量计算牙本质吸收相对深度。<br> 结果与结论:10 g镍钛螺簧组牙骨质不规则吸收,压力侧牙周膜间隙变窄;25 g镍钛螺簧组压力侧可见牙骨质及牙本质不规则吸收;50 g镍钛螺簧组牙根可见明显的吸收,深达牙本质层。10 g螺簧组牙本质吸收相对深度与对照组相比差异无显著性意义(P>0.05),其他各组之间牙本质吸收相对深度差异均有显著性意义(P<0.05)。说明在大鼠两个中切牙牙根中部及牙槽骨处钻洞并用结扎丝结扎,使两个中切牙与牙槽骨成为一个整体,共同作为支抗,采用镍钛螺簧拉第一磨牙近中移动,可建立稳定、科学、可靠的正畸牙移动的动物模型。10 g力是大鼠第一磨牙近中移动所需的合适力值。
揹景:在有關正畸牙移動的實驗中,動物模型的建立是關鍵,其中力值的選擇、支抗的控製對實驗結果的影響很大。<br> 目的:在綜閤攷慮各種因素的情況下,建立一箇較完善的正畸牙移動動物模型。<br> 方法:在20隻Wistar大鼠上頜兩箇切牙牙根中部水平鑽洞,用0.3 mm直徑結扎絲從洞中穿過,將牙槽骨、兩箇切牙結扎在一起,將右上頜第一磨牙以0.2 mm直徑結扎絲結扎,隨機分為4組,在切牙和第一磨牙間分彆置10,25,50 g Sental oy鎳鈦螺簧,以切牙為支抗,拉第一磨牙嚮近中移動,以不加力的為對照組。加力後14 d囌木精-伊紅染色觀察第一磨牙牙體牙髓變化,併使用軟件測量計算牙本質吸收相對深度。<br> 結果與結論:10 g鎳鈦螺簧組牙骨質不規則吸收,壓力側牙週膜間隙變窄;25 g鎳鈦螺簧組壓力側可見牙骨質及牙本質不規則吸收;50 g鎳鈦螺簧組牙根可見明顯的吸收,深達牙本質層。10 g螺簧組牙本質吸收相對深度與對照組相比差異無顯著性意義(P>0.05),其他各組之間牙本質吸收相對深度差異均有顯著性意義(P<0.05)。說明在大鼠兩箇中切牙牙根中部及牙槽骨處鑽洞併用結扎絲結扎,使兩箇中切牙與牙槽骨成為一箇整體,共同作為支抗,採用鎳鈦螺簧拉第一磨牙近中移動,可建立穩定、科學、可靠的正畸牙移動的動物模型。10 g力是大鼠第一磨牙近中移動所需的閤適力值。
배경:재유관정기아이동적실험중,동물모형적건립시관건,기중력치적선택、지항적공제대실험결과적영향흔대。<br> 목적:재종합고필각충인소적정황하,건립일개교완선적정기아이동동물모형。<br> 방법:재20지Wistar대서상합량개절아아근중부수평찬동,용0.3 mm직경결찰사종동중천과,장아조골、량개절아결찰재일기,장우상합제일마아이0.2 mm직경결찰사결찰,수궤분위4조,재절아화제일마아간분별치10,25,50 g Sental oy얼태라황,이절아위지항,랍제일마아향근중이동,이불가력적위대조조。가력후14 d소목정-이홍염색관찰제일마아아체아수변화,병사용연건측량계산아본질흡수상대심도。<br> 결과여결론:10 g얼태라황조아골질불규칙흡수,압력측아주막간극변착;25 g얼태라황조압력측가견아골질급아본질불규칙흡수;50 g얼태라황조아근가견명현적흡수,심체아본질층。10 g라황조아본질흡수상대심도여대조조상비차이무현저성의의(P>0.05),기타각조지간아본질흡수상대심도차이균유현저성의의(P<0.05)。설명재대서량개중절아아근중부급아조골처찬동병용결찰사결찰,사량개중절아여아조골성위일개정체,공동작위지항,채용얼태라황랍제일마아근중이동,가건립은정、과학、가고적정기아이동적동물모형。10 g력시대서제일마아근중이동소수적합괄력치。
BACKGROUND:The establishment of model is very crucial in the orthodontic tooth movement experiment. The selection of force and control ing of anchorage may greatly affect experimental results. <br> OBJECTIVE:To establish an animal model for orthodontic tooth movement. <br> METHODS:Twenty Wistar rats were included in this study. The root of incisor teeth at upper jaw was dril ed and then threaded with a ligature wire (0.3 mm diameter), therefore the alveolar bone and two incisor teeth were ligated. The first molar at right upper jaw was also ligated using a ligature wire (0.2 mm diameter). The experimental teeth were randomly divided into four groups. A Sental oy closed-coil spring (10 g, 25 g, 50 g) was placed between the maxil ary incisors and the maxil ary first molar, respectively. Taking the incisor as the anchorage, the molars were given a mesial movement, and control group received no force. On day 14, the dental pulp, dentin and enamin resorption was analyzed with Image-Pro Plus software. <br> RESULTS AND CONCLUSION:A light force (10 g Ni-Ti coil spring) produced irregular enamel resorption and narrowed periodontal membrane space, whereas heavy force (25 g Ni-Ti coil spring) produced irregular dentin and enamel resorption, even heavier force (50 g Ni-Ti coil spring) produced apparent resorption at dental root, which affected the dentin. No statistical difference of the relative depth of dentin resorption was found between the 10 g group and the control group (P>0.05). The data between other groups showed statistical y significant differences (P<0.05). The mechanical union of the incisors and the mandibular bone efficiently prevents the continuous eruption of the upper incisors, which maintains the anchorage stability. Using Ni-Ti coil spring, a stable, scientific and reliable model of orthodontic tooth movement can be established through mesial movement of the first molars. The optimal force of 10 g is used to move the rat first molar mesial y.