微电机
微電機
미전궤
MICROMOTORS SERVO TECHNIQUE
2014年
6期
57-60,68
,共5页
内置式永磁同步电动机%线性磁链%滑模观测器%锁相环%无速度传感器控制
內置式永磁同步電動機%線性磁鏈%滑模觀測器%鎖相環%無速度傳感器控製
내치식영자동보전동궤%선성자련%활모관측기%쇄상배%무속도전감기공제
interior permanent-magnet synchronous motor%linear flux%sliding mode observer%phase-locked loop%speed sensorless control
本文根据内置式永磁同步电动机( IPMSM)的线性磁链模型,以定子电流和线性磁链为状态变量构建磁链滑模观测器,用于从观测磁链中提取位置信息实现无速度传感器控制。观测器中用实际电流与重构电流偏差构建滑模切换面,将得到的等效控制信号经反馈矩阵引入线性磁链模型中,利用磁链误差方程的滤波特性消除抖振分量,得到正弦度高的观测磁链。然后利用锁相环的频率跟踪特性,从磁链观测值中提取转子位置角及转速信息。与传统反电动势滑模观测器相比,无需低通滤波器,提高了位置辨识精度,具有更快的动态响应。仿真和实验验证了该控制方法的有效性。
本文根據內置式永磁同步電動機( IPMSM)的線性磁鏈模型,以定子電流和線性磁鏈為狀態變量構建磁鏈滑模觀測器,用于從觀測磁鏈中提取位置信息實現無速度傳感器控製。觀測器中用實際電流與重構電流偏差構建滑模切換麵,將得到的等效控製信號經反饋矩陣引入線性磁鏈模型中,利用磁鏈誤差方程的濾波特性消除抖振分量,得到正絃度高的觀測磁鏈。然後利用鎖相環的頻率跟蹤特性,從磁鏈觀測值中提取轉子位置角及轉速信息。與傳統反電動勢滑模觀測器相比,無需低通濾波器,提高瞭位置辨識精度,具有更快的動態響應。倣真和實驗驗證瞭該控製方法的有效性。
본문근거내치식영자동보전동궤( IPMSM)적선성자련모형,이정자전류화선성자련위상태변량구건자련활모관측기,용우종관측자련중제취위치신식실현무속도전감기공제。관측기중용실제전류여중구전류편차구건활모절환면,장득도적등효공제신호경반궤구진인입선성자련모형중,이용자련오차방정적려파특성소제두진분량,득도정현도고적관측자련。연후이용쇄상배적빈솔근종특성,종자련관측치중제취전자위치각급전속신식。여전통반전동세활모관측기상비,무수저통려파기,제고료위치변식정도,구유경쾌적동태향응。방진화실험험증료해공제방법적유효성。
In this paper , a novel flux sliding mode observer was presented , which based on linear flux model of interior permanent-magnet synchronous motor , the state variables are stator current and linear flux , this observer can extract the position information from estimated flux and realize speed sensorless control.The de-viation between actual and reconstructing current was used to build the switching surface of sliding mode ob -server , and then got the equivalent control signal into linear flux model by the feedback matrix.Use the filte-ring features of flux error equation to eliminate chattering component , the estimated flux has a high sine de-gree.Using phase-locked loop frequency tracking characteristics , extract rotor position angle and speed in-formation from the estimated flux.Compared with traditional electromotive force sliding mode observer , the novel flux observer don′t need low-pass filter , and improved the precision of position identification , has fas-ter dynamic response.Simulation and experiment verify the effectiveness of the proposed control method.