河南科学
河南科學
하남과학
HENAN SCIENCE
2014年
6期
1037-1041
,共5页
丁硕%常晓恒%巫庆辉%杨友林
丁碩%常曉恆%巫慶輝%楊友林
정석%상효항%무경휘%양우림
SOFM神经网络%故障诊断%改进的罗杰斯三比值法%变压器%泛化能力
SOFM神經網絡%故障診斷%改進的囉傑斯三比值法%變壓器%汎化能力
SOFM신경망락%고장진단%개진적라걸사삼비치법%변압기%범화능력
SOFM neural network%fault diagnosis%improved Rogers three-ratio method%transformer%general-ization ability
SOFM神经网络具有强大的非线性映射能力和高度的自组织和自学习能力,将SOFM神经网络应用于变压器的故障诊断。利用改进的罗杰斯三比值法获取变压器故障诊断的特征向量,建立了SOFM网络故障诊断模型,并对模型进行训练。为了检验模型的实际诊断能力,以变压器的4种典型故障诊断为例进行仿真实验。仿真结果表明:SOFM神经网络能够根据获胜神经元在竞争层的位置对变压器故障进行判断,诊断准确率高,收敛速度快,泛化能力强,表明基于SOFM网络的变压器的故障诊断是一种行之有效的方法。
SOFM神經網絡具有彊大的非線性映射能力和高度的自組織和自學習能力,將SOFM神經網絡應用于變壓器的故障診斷。利用改進的囉傑斯三比值法穫取變壓器故障診斷的特徵嚮量,建立瞭SOFM網絡故障診斷模型,併對模型進行訓練。為瞭檢驗模型的實際診斷能力,以變壓器的4種典型故障診斷為例進行倣真實驗。倣真結果錶明:SOFM神經網絡能夠根據穫勝神經元在競爭層的位置對變壓器故障進行判斷,診斷準確率高,收斂速度快,汎化能力彊,錶明基于SOFM網絡的變壓器的故障診斷是一種行之有效的方法。
SOFM신경망락구유강대적비선성영사능력화고도적자조직화자학습능력,장SOFM신경망락응용우변압기적고장진단。이용개진적라걸사삼비치법획취변압기고장진단적특정향량,건립료SOFM망락고장진단모형,병대모형진행훈련。위료검험모형적실제진단능력,이변압기적4충전형고장진단위례진행방진실험。방진결과표명:SOFM신경망락능구근거획성신경원재경쟁층적위치대변압기고장진행판단,진단준학솔고,수렴속도쾌,범화능력강,표명기우SOFM망락적변압기적고장진단시일충행지유효적방법。
Self-organizing feature mapping(SOFM)neural network has a strong nonlinear mapping ability as well as a powerful self-organizing and self-learning ability. It is applied to fault diagnosis of transformers. Improved Rogers three-ratio method is used to obtain the characteristic vectors of transformer fault diagnosis. First,a diagnosis model based on SOFM neural network is established and trained. To test the practical diagnosis ability of the model , 4 kinds of typical faults of transformers are taken as examples in the simulation experiment. The simulation results show that SOFM neural network can identify the fault types according to the location of winning neurons in the com-peting layer. And it has high accuracy,fast convergence speed and strong generalization ability,which indicates that the transformer fault diagnosis method based on SOFM neural network is effective .