物理化学学报
物理化學學報
물이화학학보
ACTA PHYSICO-CHIMICA SINICA
2014年
7期
1332-1340
,共9页
孙海杰%李永宇%李帅辉%张元馨%刘寿长%刘仲毅%任保增
孫海傑%李永宇%李帥輝%張元馨%劉壽長%劉仲毅%任保增
손해걸%리영우%리수휘%장원형%류수장%류중의%임보증
苯%选择加氢%环己烯%钌%锌%镧
苯%選擇加氫%環己烯%釕%鋅%鑭
분%선택가경%배기희%조%자%란
Benzene%Selective hydrogenation%Cyclohexene%Ruthenium%Znic%Lanthanum
用沉淀法制备了单金属纳米Ru(0)催化剂,考察了ZnSO4和La2O3作共修饰剂对该催化剂催化苯选择加氢制环己烯性能的影响,并用X射线衍射(XRD)、X射线荧光(XRF)光谱、X射线光电子能谱(XPS)、俄歇电子能谱(AES)、透射电镜(TEM)和N2物理吸附等手段对加氢前后催化剂进行了表征.结果表明,在ZnSO4存在下,随着添加碱性La2O3量的增加, ZnSO4水解生成的(Zn(OH)2)3(ZnSO4)(H2O)x (x=1,3)盐量增加,催化剂活性单调降低,环己烯选择性单调升高.当La2O3/Ru物质的量比为0.075时, Ru催化剂上苯转化率为77.6%,环己烯选择性和收率分别为75.2%和58.4%.且该催化体系具有良好的重复使用性能.传质计算结果表明,苯、环己烯和氢气的液-固扩散限制和孔内扩散限制都可忽略.因此,高环己烯选择性和收率的获得不能简单归结为物理效应,而与催化剂的结构和催化体系密切相关.根据实验结果,我们推测在化学吸附有(Zn(OH)2)3(ZnSO4)(H2O)x (x=1,3)盐的Ru(0)催化剂有两种活化苯的活性位:Ru0和Zn2+.因为Zn2+将部分电子转移给了Ru, Zn2+活化苯的能力比Ru0弱.同时由于Ru和Zn2+的原子半径接近, Zn2+可以覆盖一部分Ru0活性位,导致解离H2的Ru0活性位减少.这导致了Zn2+上活化的苯只能加氢生成环己烯和Ru(0)催化剂活性的降低.本文利用双活性位模型来解释Ru基催化剂上的苯加氢反应,并用Hückel分子轨道理论说明了该模型的合理性.
用沉澱法製備瞭單金屬納米Ru(0)催化劑,攷察瞭ZnSO4和La2O3作共脩飾劑對該催化劑催化苯選擇加氫製環己烯性能的影響,併用X射線衍射(XRD)、X射線熒光(XRF)光譜、X射線光電子能譜(XPS)、俄歇電子能譜(AES)、透射電鏡(TEM)和N2物理吸附等手段對加氫前後催化劑進行瞭錶徵.結果錶明,在ZnSO4存在下,隨著添加堿性La2O3量的增加, ZnSO4水解生成的(Zn(OH)2)3(ZnSO4)(H2O)x (x=1,3)鹽量增加,催化劑活性單調降低,環己烯選擇性單調升高.噹La2O3/Ru物質的量比為0.075時, Ru催化劑上苯轉化率為77.6%,環己烯選擇性和收率分彆為75.2%和58.4%.且該催化體繫具有良好的重複使用性能.傳質計算結果錶明,苯、環己烯和氫氣的液-固擴散限製和孔內擴散限製都可忽略.因此,高環己烯選擇性和收率的穫得不能簡單歸結為物理效應,而與催化劑的結構和催化體繫密切相關.根據實驗結果,我們推測在化學吸附有(Zn(OH)2)3(ZnSO4)(H2O)x (x=1,3)鹽的Ru(0)催化劑有兩種活化苯的活性位:Ru0和Zn2+.因為Zn2+將部分電子轉移給瞭Ru, Zn2+活化苯的能力比Ru0弱.同時由于Ru和Zn2+的原子半徑接近, Zn2+可以覆蓋一部分Ru0活性位,導緻解離H2的Ru0活性位減少.這導緻瞭Zn2+上活化的苯隻能加氫生成環己烯和Ru(0)催化劑活性的降低.本文利用雙活性位模型來解釋Ru基催化劑上的苯加氫反應,併用Hückel分子軌道理論說明瞭該模型的閤理性.
용침정법제비료단금속납미Ru(0)최화제,고찰료ZnSO4화La2O3작공수식제대해최화제최화분선택가경제배기희성능적영향,병용X사선연사(XRD)、X사선형광(XRF)광보、X사선광전자능보(XPS)、아헐전자능보(AES)、투사전경(TEM)화N2물리흡부등수단대가경전후최화제진행료표정.결과표명,재ZnSO4존재하,수착첨가감성La2O3량적증가, ZnSO4수해생성적(Zn(OH)2)3(ZnSO4)(H2O)x (x=1,3)염량증가,최화제활성단조강저,배기희선택성단조승고.당La2O3/Ru물질적량비위0.075시, Ru최화제상분전화솔위77.6%,배기희선택성화수솔분별위75.2%화58.4%.차해최화체계구유량호적중복사용성능.전질계산결과표명,분、배기희화경기적액-고확산한제화공내확산한제도가홀략.인차,고배기희선택성화수솔적획득불능간단귀결위물리효응,이여최화제적결구화최화체계밀절상관.근거실험결과,아문추측재화학흡부유(Zn(OH)2)3(ZnSO4)(H2O)x (x=1,3)염적Ru(0)최화제유량충활화분적활성위:Ru0화Zn2+.인위Zn2+장부분전자전이급료Ru, Zn2+활화분적능력비Ru0약.동시유우Ru화Zn2+적원자반경접근, Zn2+가이복개일부분Ru0활성위,도치해리H2적Ru0활성위감소.저도치료Zn2+상활화적분지능가경생성배기희화Ru(0)최화제활성적강저.본문이용쌍활성위모형래해석Ru기최화제상적분가경반응,병용Hückel분자궤도이론설명료해모형적합이성.
A nano-scale monometal ic Ru(0) catalyst was prepared by the precipitation method, and the effect of using ZnSO4 and La2O3 as co-modifiers on the performance of the catalyst for selective hydrogenation of benzene to cyclohexene was investigated. The catalysts before and after hydrogenation were characterized by X-ray diffraction (XRD), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), transmission electron microscopy (TEM), and N2-physisorption. It was found that increasing the amount of alkaline La2O3 increased the amount of the ((Zn(OH)2)3(ZnSO4)(H2O)x (x=1, 3) salt formed by the hydrolysis of ZnSO4, which resulted in a gradual decrease of the activity of the Ru(0) catalyst and a gradual increase of the selectivity for cyclohexene. When the molar ratio of La2O3/Ru was 0.075, cyclohexene selectivity of 75.2%and cyclohexene yield of 58.4%at a benzene conversion of 77.6%were achieved in 25 min over the Ru(0) catalyst in the presence of ZnSO4. Moreover, this catalytic system had good reusability. The mass transfer calculation results indicated that the liquid-solid diffusion constraints and pore diffusion limitations could al be ignored. This suggested that the high cyclohexene selectivity and cyclohexene yield could not be simply ascribed to physical effects, and were closely related to the catalyst structure and the catalytic system. Based on the experimental results, we suggest that the surface of the Ru(0) catalyst on which the (Zn(OH)2)3(ZnSO4)(H2O)x (x=1, 3) salt chemisorbed had two types of active sites for activating the benzene molecules:Ru0 and Zn2+. The ability of Zn2+to activate benzene was much weaker than that of Ru0 owing to some electron transfer from Zn2+to Ru0, which was confirmed by the XPS and AES results. Furthermore, Zn2+could cover some of the Ru active sites because Ru and Zn2+ have similar atomic radi , which decreased the number of Ru0 active sites for activating H2 molecules. As a result, the benzene activated on Zn2+could only be hydrogenated to cyclohexene, and the activity of the Ru(0) catalyst decreased. A dual active site model is proposed, for the first time, to explain the reaction of benzene hydrogenation over the Ru-based catalyst, and Hückel molecular orbital theory was used to show the reasonableness of the model.