计算机与数字工程
計算機與數字工程
계산궤여수자공정
COMPUTER & DIGITAL ENGINEERING
2014年
7期
1257-1261
,共5页
人脸识别%局部二值模式(LBP)%流形学习
人臉識彆%跼部二值模式(LBP)%流形學習
인검식별%국부이치모식(LBP)%류형학습
face recognition%local binary patterns (LBP)%manifold learning
人脸识别是计算机视觉领域的研究热点,应用背景广泛。近年来,流形被认为是视觉感知的基础,流形学习算法被用来发现图像的内在特征。如何利用流形学习后的低维内蕴变量成为相关研究的核心问题。但是利用传统的流形学习算法降维得到的人脸低维特征在可分性上存在一定的不足。此外,流形学习算法对光照和姿态变化敏感。针对这两个问题,提出了一种基于局部二值模式(LBP)和流形知识的人脸识别方法。该方法首先利用LBP算子对人脸图像进行局部特征描述,然后使用流形学习算法获得高维特征数据的低维内蕴变量,并用泰勒展开式近似该流形,获取流形知识,最后利用流形知识估计流形距离来实现人脸识别。实验证明,该方法增强了人脸识别对光照变化的鲁棒性,从而提高了识别性能。
人臉識彆是計算機視覺領域的研究熱點,應用揹景廣汎。近年來,流形被認為是視覺感知的基礎,流形學習算法被用來髮現圖像的內在特徵。如何利用流形學習後的低維內蘊變量成為相關研究的覈心問題。但是利用傳統的流形學習算法降維得到的人臉低維特徵在可分性上存在一定的不足。此外,流形學習算法對光照和姿態變化敏感。針對這兩箇問題,提齣瞭一種基于跼部二值模式(LBP)和流形知識的人臉識彆方法。該方法首先利用LBP算子對人臉圖像進行跼部特徵描述,然後使用流形學習算法穫得高維特徵數據的低維內蘊變量,併用泰勒展開式近似該流形,穫取流形知識,最後利用流形知識估計流形距離來實現人臉識彆。實驗證明,該方法增彊瞭人臉識彆對光照變化的魯棒性,從而提高瞭識彆性能。
인검식별시계산궤시각영역적연구열점,응용배경엄범。근년래,류형피인위시시각감지적기출,류형학습산법피용래발현도상적내재특정。여하이용류형학습후적저유내온변량성위상관연구적핵심문제。단시이용전통적류형학습산법강유득도적인검저유특정재가분성상존재일정적불족。차외,류형학습산법대광조화자태변화민감。침대저량개문제,제출료일충기우국부이치모식(LBP)화류형지식적인검식별방법。해방법수선이용LBP산자대인검도상진행국부특정묘술,연후사용류형학습산법획득고유특정수거적저유내온변량,병용태륵전개식근사해류형,획취류형지식,최후이용류형지식고계류형거리래실현인검식별。실험증명,해방법증강료인검식별대광조변화적로봉성,종이제고료식별성능。
Face recognition is a hot research topic in the field of computer vision ,and has wide application .Recently manifolds are thought to be fundamental for visual perception ,and manifold learning algorithms are developed for discovering intrinsical features .How to use the low dimensional intrinsic variables obtained by manifold learning becomes the core issue of related research .But the classification result sometimes is not accurate when faces are classified in low dimensional sub-space directly .Furthermore ,manifold learning methods are sensitive to the variation of illumination conditions .In order to solve these two problems ,a novel face recognition method based on LBP and manifold learning is proposed .Firstly ,LBP op-erator is used to describe the local features of the face images .After obtaining the intrinsic variables of the feature data by manifold learning algorithm ,the manifold is then approximated by higher-order Taylor expansion whose parameters are saved as manifold knowledge .And then face recognition is realized by solving the manifold distance .Experimental results show that the proposed method is robust to illumination and can improve face recognition performance effectively .