计算机工程与设计
計算機工程與設計
계산궤공정여설계
COMPUTER ENGINEERING AND DESIGN
2014年
7期
2462-2466
,共5页
语音去噪%经验模态分解%小波变换%小波阈值去噪%信噪比
語音去譟%經驗模態分解%小波變換%小波閾值去譟%信譟比
어음거조%경험모태분해%소파변환%소파역치거조%신조비
speech de-noising%EMD%wavelet transform%wavelet threshold de-noising%SNR
为了有效抑制语音信号传输中引入的噪声,提出一种基于经验模态分解(EMD)的小波阈值去噪方法。针对传统小波阈值去噪方法中,硬阈值函数的不连续性和软阈值函数中估计小波系数与分解小波系数之间的恒定偏差问题,构造了一种高阶可导的新阈值函数。该函数通过调整双参数实现函数形状的灵活变化,以接近理想小波系数。将该去噪方法应用于实际语音信号进行去噪处理。实验结果表明,在信噪比较低时,相比单纯采用小波阈值方法和EMD尺度滤波方法,采用该方法对语音信号进行处理能提高信噪比,较好地抑制噪声的干扰,可用于噪声环境下语音识别系统的前端处理,提高系统的识别效果。
為瞭有效抑製語音信號傳輸中引入的譟聲,提齣一種基于經驗模態分解(EMD)的小波閾值去譟方法。針對傳統小波閾值去譟方法中,硬閾值函數的不連續性和軟閾值函數中估計小波繫數與分解小波繫數之間的恆定偏差問題,構造瞭一種高階可導的新閾值函數。該函數通過調整雙參數實現函數形狀的靈活變化,以接近理想小波繫數。將該去譟方法應用于實際語音信號進行去譟處理。實驗結果錶明,在信譟比較低時,相比單純採用小波閾值方法和EMD呎度濾波方法,採用該方法對語音信號進行處理能提高信譟比,較好地抑製譟聲的榦擾,可用于譟聲環境下語音識彆繫統的前耑處理,提高繫統的識彆效果。
위료유효억제어음신호전수중인입적조성,제출일충기우경험모태분해(EMD)적소파역치거조방법。침대전통소파역치거조방법중,경역치함수적불련속성화연역치함수중고계소파계수여분해소파계수지간적항정편차문제,구조료일충고계가도적신역치함수。해함수통과조정쌍삼수실현함수형상적령활변화,이접근이상소파계수。장해거조방법응용우실제어음신호진행거조처리。실험결과표명,재신조비교저시,상비단순채용소파역치방법화EMD척도려파방법,채용해방법대어음신호진행처리능제고신조비,교호지억제조성적간우,가용우조성배경하어음식별계통적전단처리,제고계통적식별효과。
To restrain the noise introduced during the transmission of speech signal effectively,a method based on EMD and wavelet threshold de-noising was proposed.Moreover,aiming at the problems of the discontinuance of hard threshold function and the constant deviation between estimated wavelet coefficients and decomposition wavelet coefficients in the soft threshold function in conventional wavelet threshold de-noising,a new kind of high order derivable threshold function was constructed, which could change the shape of the function flexiblely by adjusting dual parameter to get close to the ideal wavelet coefficients. The EMD-based wavelet threshold method was applied to process actual speech signal.Simulation results showed that the pro-posed method increased output SNR and restrained the noise better,compared with speech de-noising based on wavelet and EMD scale filter in the case of low SNR,and could be used in the front of speech recognition system in noisy environment to improve the accuracy of the recognition results.