电子设计工程
電子設計工程
전자설계공정
ELECTRONIC DESIGN ENGINEERING
2014年
12期
167-170
,共4页
段玉波%任璐%任伟建%霍凤财
段玉波%任璐%任偉建%霍鳳財
단옥파%임로%임위건%곽봉재
肤色分割%双阈值%权值更新%预处理%过分配%人脸检测
膚色分割%雙閾值%權值更新%預處理%過分配%人臉檢測
부색분할%쌍역치%권치경신%예처리%과분배%인검검측
shin color%segmentation%dual-threshold%weight update%pretreatment%distribution%face detection
为解决当被检测图像中具有复杂背景或者含有多人脸时,不能够快速准确的进行人脸检测的问题,本文提出一种基于肤色分割和改进AdaBoost算法的人脸检测方法。首先利用肤色分割方法对样本图像实现图像的预处理,排除样本图像的复杂背景和人体非肤色区域,简化后续的人脸检测工作。然后对AdaBoost算法的弱分类器使用双阈值判决方法,以减少弱分类器个数,提升训练速度;改进权值更新规则,防止训练过程中出现过分配现象。最后对基于肤色分割得到的区域图像利用改进后的Adaboost算法进行最后的精确人脸检测。仿真试验表明,两种算法结合后在训练速度上提升,在检测速度和检测率上有明显提高。
為解決噹被檢測圖像中具有複雜揹景或者含有多人臉時,不能夠快速準確的進行人臉檢測的問題,本文提齣一種基于膚色分割和改進AdaBoost算法的人臉檢測方法。首先利用膚色分割方法對樣本圖像實現圖像的預處理,排除樣本圖像的複雜揹景和人體非膚色區域,簡化後續的人臉檢測工作。然後對AdaBoost算法的弱分類器使用雙閾值判決方法,以減少弱分類器箇數,提升訓練速度;改進權值更新規則,防止訓練過程中齣現過分配現象。最後對基于膚色分割得到的區域圖像利用改進後的Adaboost算法進行最後的精確人臉檢測。倣真試驗錶明,兩種算法結閤後在訓練速度上提升,在檢測速度和檢測率上有明顯提高。
위해결당피검측도상중구유복잡배경혹자함유다인검시,불능구쾌속준학적진행인검검측적문제,본문제출일충기우부색분할화개진AdaBoost산법적인검검측방법。수선이용부색분할방법대양본도상실현도상적예처리,배제양본도상적복잡배경화인체비부색구역,간화후속적인검검측공작。연후대AdaBoost산법적약분류기사용쌍역치판결방법,이감소약분류기개수,제승훈련속도;개진권치경신규칙,방지훈련과정중출현과분배현상。최후대기우부색분할득도적구역도상이용개진후적Adaboost산법진행최후적정학인검검측。방진시험표명,량충산법결합후재훈련속도상제승,재검측속도화검측솔상유명현제고。
To solve the problem that can not detect face quickly and accurately when the detected images has complex background or contain more faces,A face detection algorithm combined with skin color segmentation and improved Adaboost algorithm is presented.Firstly,pretreatment of sample images to achieve image by using skin color segmentation,exclusion of sample images with complex background and human non-skin regions,the follow-up work has been simplified.Then the dual-threshold decision method of weak classifiers Adaboost algorithm is used to reduce the number of weak classifiers and improve the training speed.Improved weight update rules to prevent distribution of the phenomenon appeared in the training process. Finally, the improved Adaboost algorithm is used to get the final accurate face detection based on areas of the image through skin color segmentation. Simulation results show that the combination of two algorithms improved the training speed, the detection speed and detection rate has improved significantly.