电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2014年
13期
89-94
,共6页
罗建春%晁勤%罗洪%冉鸿%杨杰%罗庆%阿里努尔·阿木提
囉建春%晁勤%囉洪%冉鴻%楊傑%囉慶%阿裏努爾·阿木提
라건춘%조근%라홍%염홍%양걸%라경%아리노이·아목제
光伏出力预测%LVQ-GA-BP预测模型%气象因素%神经网络
光伏齣力預測%LVQ-GA-BP預測模型%氣象因素%神經網絡
광복출력예측%LVQ-GA-BP예측모형%기상인소%신경망락
PV output forecasting%LVQ-GA-BP forecasting model%meteorological factor%neural network
为了实现对大规模并网型光伏电站调度,分析影响光伏出力的气象相关因素,以光照强度和温度作为输入量,分季节建立了一种基于LVQ-GA-BP神经网络预测系统。通过LVQ(Learning Vector Quantization)神经网络对样本进行分类,将分类后的样本训练,得出基于BP神经网络光伏电站出力预测系统,从而提高光伏预测精度。采用GA算法替代传统的学习算法优化BP神经网络的权值和阀值,提高预测网络的训练速度。将建立的LVQ-GA-BP预测系统与传统系统进行了比较和分析,结果表明:该方法的建立,不仅提高了光伏出力的预测精度,而且还提高了BP神经网络的训练速度,具有潜在的工程应用价值。
為瞭實現對大規模併網型光伏電站調度,分析影響光伏齣力的氣象相關因素,以光照彊度和溫度作為輸入量,分季節建立瞭一種基于LVQ-GA-BP神經網絡預測繫統。通過LVQ(Learning Vector Quantization)神經網絡對樣本進行分類,將分類後的樣本訓練,得齣基于BP神經網絡光伏電站齣力預測繫統,從而提高光伏預測精度。採用GA算法替代傳統的學習算法優化BP神經網絡的權值和閥值,提高預測網絡的訓練速度。將建立的LVQ-GA-BP預測繫統與傳統繫統進行瞭比較和分析,結果錶明:該方法的建立,不僅提高瞭光伏齣力的預測精度,而且還提高瞭BP神經網絡的訓練速度,具有潛在的工程應用價值。
위료실현대대규모병망형광복전참조도,분석영향광복출력적기상상관인소,이광조강도화온도작위수입량,분계절건립료일충기우LVQ-GA-BP신경망락예측계통。통과LVQ(Learning Vector Quantization)신경망락대양본진행분류,장분류후적양본훈련,득출기우BP신경망락광복전참출력예측계통,종이제고광복예측정도。채용GA산법체대전통적학습산법우화BP신경망락적권치화벌치,제고예측망락적훈련속도。장건립적LVQ-GA-BP예측계통여전통계통진행료비교화분석,결과표명:해방법적건립,불부제고료광복출력적예측정도,이차환제고료BP신경망락적훈련속도,구유잠재적공정응용개치。
In order to schedule the large-scale grid-connected PV generation, the weather-related factors of PV power output are analyzed. PV short-term power output forecasting system is proposed in accordance with the four seasons based on LVQ-GA-BP neural network, whose input parameters are light intensity and temperature. The samples about PV output and weather-related factors are classified by learning vector quantization (LVQ) neural network. Then, the classified samples are trained to get the PV short-term output forecasting system based on GA-BP neural network in purpose of increasing forecasting accuracy. Secondly, we propose GA algorithm is an alternative to traditional learning algorithm to optimize BP neural network weights and thresholds, improving forecasting network training speed. At last, the LVQ-GA-BP forecasting system and the traditional forecasting system are compared and analyzed. The results show that the proposed forecasting system not only improve the PV output forecasting accuracy, but also raise the BP neural network training speed, which has potential value in engineering applications.