电力系统保护与控制
電力繫統保護與控製
전력계통보호여공제
POWER SYSTM PROTECTION AND CONTROL
2014年
13期
59-63
,共5页
直流%高温超导%故障限流器%铁心型%软磁复合材料
直流%高溫超導%故障限流器%鐵心型%軟磁複閤材料
직류%고온초도%고장한류기%철심형%연자복합재료
DC%high temperature superconducting%fault current limiter%core%soft magnetic composites
分析了直流电力系统保护的发展现状,设计了一种铁心型高温超导故障限流器。为了尽量延长限流的时间,限流器的铁心采用软磁复合材料(SMC)。限流器在系统正常工作时对电力系统影响很小,当短路故障发生时,它会很快表现为大阻抗以限制短路电流。基于磁场有限元与电路耦合的计算方法,首先对限流线圈在短路过程中的非线性电感进行精确计算,然后结合计算结果,在电路仿真程序中计算短路电流。通过对比SMC与硅钢铁心材料限流器的限流情况,可以看出SMC铁心限流器对于直流电力系统短路故障的限流效果更好。在短路故障发生后8 ms时,该限流器能将短路电流限制到最大值的12%。
分析瞭直流電力繫統保護的髮展現狀,設計瞭一種鐵心型高溫超導故障限流器。為瞭儘量延長限流的時間,限流器的鐵心採用軟磁複閤材料(SMC)。限流器在繫統正常工作時對電力繫統影響很小,噹短路故障髮生時,它會很快錶現為大阻抗以限製短路電流。基于磁場有限元與電路耦閤的計算方法,首先對限流線圈在短路過程中的非線性電感進行精確計算,然後結閤計算結果,在電路倣真程序中計算短路電流。通過對比SMC與硅鋼鐵心材料限流器的限流情況,可以看齣SMC鐵心限流器對于直流電力繫統短路故障的限流效果更好。在短路故障髮生後8 ms時,該限流器能將短路電流限製到最大值的12%。
분석료직류전력계통보호적발전현상,설계료일충철심형고온초도고장한류기。위료진량연장한류적시간,한류기적철심채용연자복합재료(SMC)。한류기재계통정상공작시대전력계통영향흔소,당단로고장발생시,타회흔쾌표현위대조항이한제단로전류。기우자장유한원여전로우합적계산방법,수선대한류선권재단로과정중적비선성전감진행정학계산,연후결합계산결과,재전로방진정서중계산단로전류。통과대비SMC여규강철심재료한류기적한류정황,가이간출SMC철심한류기대우직류전력계통단로고장적한류효과경호。재단로고장발생후8 ms시,해한류기능장단로전류한제도최대치적12%。
The progress of the research on DC power system protection equipment is reviewed. A magnetic core direct current (DC) high temperature superconducting (HTS) fault current limiter (FCL) saturated by DC bias winding is presented. The core of SFCL is made of soft magnetic composites (SMC) to prolong the current limiting time. The inductance of the winding, which is connected in the power system to be protected, is small in normal operation. However, when a short-circuit fault occurs, the SFCL can provide large inductance to reduce the fault current. The design and analysis methodology of the SFCL is developed. The performance evaluation of the SFCL is performed through numerical simulation by using 3-dimensional finite element analysis (FEA) of magnetic field coupled with the transient nonlinear circuit model. A comparison with silicon steel core FCL shows that the SMC core HTS FCL has rapid response to limit fault current and a good limiting effect. The maximum value of short-circuit current will be reduced to 12 percent at 8 ms.