上海第二工业大学学报
上海第二工業大學學報
상해제이공업대학학보
JOURNAL OF SHANGHAI SECOND POLYTECHNIC UNIVERSITY
2014年
3期
233-238
,共6页
自适应神经模糊推理系统%可解释性%精度%演化算法%粒子群优化
自適應神經模糊推理繫統%可解釋性%精度%縯化算法%粒子群優化
자괄응신경모호추리계통%가해석성%정도%연화산법%입자군우화
adaptive neuro-fuzzy inference system (ANFIS)%interpretability%accuracy%evolutionary algorithms%particle swarm opti-mization (PSO)
针对粒子群优化(PSO)算法在自适应神经模糊推理系统(ANFIS)中的集成应用,提出对学习神经模型参数、隶属度函数参数进行改进优化的算法。该算法可增强模糊系统的近似精度和可解释性,提高系统的性能,进而发现更好的分类优化规则。算法经4个标准数据库的数据测试,结果表现出更好的性能,获得更好的分类效果,同时降低了系统时间复杂度。
針對粒子群優化(PSO)算法在自適應神經模糊推理繫統(ANFIS)中的集成應用,提齣對學習神經模型參數、隸屬度函數參數進行改進優化的算法。該算法可增彊模糊繫統的近似精度和可解釋性,提高繫統的性能,進而髮現更好的分類優化規則。算法經4箇標準數據庫的數據測試,結果錶現齣更好的性能,穫得更好的分類效果,同時降低瞭繫統時間複雜度。
침대입자군우화(PSO)산법재자괄응신경모호추리계통(ANFIS)중적집성응용,제출대학습신경모형삼수、대속도함수삼수진행개진우화적산법。해산법가증강모호계통적근사정도화가해석성,제고계통적성능,진이발현경호적분류우화규칙。산법경4개표준수거고적수거측시,결과표현출경호적성능,획득경호적분류효과,동시강저료계통시간복잡도。
For the particle swarm optimization (PSO) algorithm on the adaptive neuro fuzzy inference system (ANFIS) integrated ap-plications, put forward an improved algorithm by optimizing the learning of neural model parameters, the parameters of membership functions. The algorithm can improve the approximation accuracy and interpretability of fuzzy systems and the performance of the sys-tem. The proposed method has been tested on four standard dataset from UCI machine learning, i.e. Iris Flower, Haberman’s Survival Data, Balloon and Thyroid dataset. The results have shown better classification using the proposed PSO-ANFIS and the time complexity has reduced accordingly.