表面技术
錶麵技術
표면기술
SURFACE TECHNOLOGY
2014年
5期
55-60
,共6页
多场复合作用%电沉积工艺参数%镍晶微铸件%表面性能
多場複閤作用%電沉積工藝參數%鎳晶微鑄件%錶麵性能
다장복합작용%전침적공예삼수%얼정미주건%표면성능
multi-field composite action%electro-deposition process parameters%nickel-crystal micro-electroforming part%sur-face properties
目的:将超声波、磁场引入到微电铸过程中,改善电沉积镍晶微构件的表面性能。方法改变电流密度、脉冲占空比、超声波功率、磁场强度的方向和强度,进行电沉积镍晶微铸件,分析这些工艺参数对微铸件表面形貌和显微硬度的影响。结果微铸件的显微硬度随磁场强度的增大而显著提高,随着阴极电流密度、超声波功率及脉冲占空比的增大呈现出先升高、后下降的规律,其中脉冲占空比对电铸层显微硬度的影响较弱。优选的工艺参数为:垂直磁场强度0.8 T,阴极电流密度2 A/ dm2,超声波功率240 W,脉冲占空比20%。结论引入超声波和磁场后可优化电沉积环境,细化电铸层晶粒尺寸,改善电铸层微观形貌,提高微铸件显微硬度。
目的:將超聲波、磁場引入到微電鑄過程中,改善電沉積鎳晶微構件的錶麵性能。方法改變電流密度、脈遲佔空比、超聲波功率、磁場彊度的方嚮和彊度,進行電沉積鎳晶微鑄件,分析這些工藝參數對微鑄件錶麵形貌和顯微硬度的影響。結果微鑄件的顯微硬度隨磁場彊度的增大而顯著提高,隨著陰極電流密度、超聲波功率及脈遲佔空比的增大呈現齣先升高、後下降的規律,其中脈遲佔空比對電鑄層顯微硬度的影響較弱。優選的工藝參數為:垂直磁場彊度0.8 T,陰極電流密度2 A/ dm2,超聲波功率240 W,脈遲佔空比20%。結論引入超聲波和磁場後可優化電沉積環境,細化電鑄層晶粒呎吋,改善電鑄層微觀形貌,提高微鑄件顯微硬度。
목적:장초성파、자장인입도미전주과정중,개선전침적얼정미구건적표면성능。방법개변전류밀도、맥충점공비、초성파공솔、자장강도적방향화강도,진행전침적얼정미주건,분석저사공예삼수대미주건표면형모화현미경도적영향。결과미주건적현미경도수자장강도적증대이현저제고,수착음겁전류밀도、초성파공솔급맥충점공비적증대정현출선승고、후하강적규률,기중맥충점공비대전주층현미경도적영향교약。우선적공예삼수위:수직자장강도0.8 T,음겁전류밀도2 A/ dm2,초성파공솔240 W,맥충점공비20%。결론인입초성파화자장후가우화전침적배경,세화전주층정립척촌,개선전주층미관형모,제고미주건현미경도。
Objective In order to improve the surface properties of electro-deposited nickel micro-electroforming parts, ultrason-ic and magnetic fields were introduced into the micro electroforming process. Methods Current intensity, pulse duty cycle, ultra-sonic power, direction and intensity of magnetic field strength were altered during the electro-deposition of nickel micro-electrofor-ming parts, and the effects of the above parameters on the performance of the surface morphology and microhardness of the micro-electroforming parts were analyzed. Results The micro-hardness of the micro-casting part increased significantly along with the in-crease of the magnetic field intensity, while first increased and then decreased along with the increasing current intensity, pulse du-ty cycle and ultrasonic power, among which the pulse duty cycle had weaker effect on the micro-hardness as compared to the other parameters. The optimized parameters were: vertical magnetic field intensity 0. 8 T, cathode current density 2 A/ dm2 , ultrasonic power 240 W, and pulse duty cycle 20% . Conclusion Electrodeposition environment could be optimized after introducing ultra-sound and magnetic fields so as to refine the grain size, improve the electroformed layer morphology and enhance the microhardness of the microcasting parts.