中国有色金属学报
中國有色金屬學報
중국유색금속학보
THE CHINESE JOURNAL OF NONFERROUS METALS
2014年
9期
2220-2227
,共8页
董凯辉%孙硕%宋影伟%单大勇
董凱輝%孫碩%宋影偉%單大勇
동개휘%손석%송영위%단대용
镁合金%氟钛酸盐%微弧氧化%电参数%原位封孔
鎂閤金%氟鈦痠鹽%微弧氧化%電參數%原位封孔
미합금%불태산염%미호양화%전삼수%원위봉공
Mg alloy%fluotitanate%microarc oxidation%electrical parameter%in-situ sealing pore
采用新型氟钛酸盐电解液对AM60镁合金进行微弧氧化处理,通过改变电流密度、氧化时间、频率和占空比4种电参数进行对比研究,采用SEM(扫描电子显微镜)观察材料的表面及截面形貌,采用EDX (能量色散X射线光谱仪)以及XRD(X射线衍射仪)确定其化学成分和相组成,通过极化曲线和阻抗谱对材料的耐蚀性进行评价。最终确定其最佳电参数如下:电流密度3 A/dm2、氧化至420 V、频率800 Hz、正占空比30%。所形成氧化膜表面的微孔在成膜过程被原位封闭,有效地解决了微弧氧化膜疏松多孔的问题。在最佳工艺条件下获得的微弧氧化膜自腐蚀电流密度可以达到1×10-7 A/cm2,其耐蚀性能优于传统电解液制备的微弧氧化膜的耐蚀性能。
採用新型氟鈦痠鹽電解液對AM60鎂閤金進行微弧氧化處理,通過改變電流密度、氧化時間、頻率和佔空比4種電參數進行對比研究,採用SEM(掃描電子顯微鏡)觀察材料的錶麵及截麵形貌,採用EDX (能量色散X射線光譜儀)以及XRD(X射線衍射儀)確定其化學成分和相組成,通過極化麯線和阻抗譜對材料的耐蝕性進行評價。最終確定其最佳電參數如下:電流密度3 A/dm2、氧化至420 V、頻率800 Hz、正佔空比30%。所形成氧化膜錶麵的微孔在成膜過程被原位封閉,有效地解決瞭微弧氧化膜疏鬆多孔的問題。在最佳工藝條件下穫得的微弧氧化膜自腐蝕電流密度可以達到1×10-7 A/cm2,其耐蝕性能優于傳統電解液製備的微弧氧化膜的耐蝕性能。
채용신형불태산염전해액대AM60미합금진행미호양화처리,통과개변전류밀도、양화시간、빈솔화점공비4충전삼수진행대비연구,채용SEM(소묘전자현미경)관찰재료적표면급절면형모,채용EDX (능량색산X사선광보의)이급XRD(X사선연사의)학정기화학성분화상조성,통과겁화곡선화조항보대재료적내식성진행평개。최종학정기최가전삼수여하:전류밀도3 A/dm2、양화지420 V、빈솔800 Hz、정점공비30%。소형성양화막표면적미공재성막과정피원위봉폐,유효지해결료미호양화막소송다공적문제。재최가공예조건하획득적미호양화막자부식전류밀도가이체도1×10-7 A/cm2,기내식성능우우전통전해액제비적미호양화막적내식성능。
A new fluotitanate electrolyte was used for preparing microarc oxidation (MAO) film on AM60 Mg alloys. Four electrical parameters, including current density, oxidation time, frequency and duty cycle, were investigated for determining the optimum parameters. The surface and cross-section morphologies were characterized by SEM (Scanning electron microscopy). The chemical composition and phase structure were analyzed by EDX (Energy dispersive X-ray spectroscopy) and XRD (X-ray diffractometry). The corrosion resistance was evaluated by polarization and EIS (Electrochemical impedance spectroscopy) measurements. The optimal electrical parameters are determined as follows:current density 3 A/dm2, oxidation at constant current to 420 V, frequency 800 Hz and positive duty cycle 30%. The micro-pores on the surface of the film are in-situ sealed during the film formation process, thus avoiding the porous structure as the traditional MAO film. The corrosion current density of the MAO film under the optimum processing conditions can reach 1×10-7 A/cm2, which is superior to the corrosion resistance of traditional MAO films.