西北工业大学学报
西北工業大學學報
서북공업대학학보
JOURNAL OF NORTHWESTERN POLYTECHNICAL UNIVERSITY
2014年
3期
341-345
,共5页
王年华%赵旭%李晓东%郭汉青
王年華%趙旭%李曉東%郭漢青
왕년화%조욱%리효동%곽한청
旋转机翼%前后对称翼型%上凸下凹%CFD%风洞试验%气动特性
鏇轉機翼%前後對稱翼型%上凸下凹%CFD%風洞試驗%氣動特性
선전궤익%전후대칭익형%상철하요%CFD%풍동시험%기동특성
aerodynamics%airfoils%computational fluid dynamics%design%drag coefficient%lift drag ratio%turbu-lence models%unmanned aerial vehicles (UAV)%wind tunnels%wings%rotational wing%fore-and-aft symmetrical airfoil%wind tunnel test%aerodynamic characteristics
旋转机翼无人机由于兼具垂直起降和高速巡航性能而备受青睐,旋转机翼翼型不同于固定翼,对旋转机翼翼型的设计和气动特性的研究具有实际意义。针对旋转机翼翼型展开有弯度的前后对称翼型设计,通过亚音速多工况数值计算筛选出升阻特性最优的翼型---弯度10%、厚度12%的上凸下凹前后对称翼型GOE-10-12。为了验证数值计算的准确性,进行了3种低速工况(20 m/s、30 m/s、40 m/s)的风洞试验,结果表明数值计算和试验获得的升力系数和阻力系数吻合较好,新设计的翼型具有良好的升阻力特性,适合应用于旋转机翼。
鏇轉機翼無人機由于兼具垂直起降和高速巡航性能而備受青睞,鏇轉機翼翼型不同于固定翼,對鏇轉機翼翼型的設計和氣動特性的研究具有實際意義。針對鏇轉機翼翼型展開有彎度的前後對稱翼型設計,通過亞音速多工況數值計算篩選齣升阻特性最優的翼型---彎度10%、厚度12%的上凸下凹前後對稱翼型GOE-10-12。為瞭驗證數值計算的準確性,進行瞭3種低速工況(20 m/s、30 m/s、40 m/s)的風洞試驗,結果錶明數值計算和試驗穫得的升力繫數和阻力繫數吻閤較好,新設計的翼型具有良好的升阻力特性,適閤應用于鏇轉機翼。
선전궤익무인궤유우겸구수직기강화고속순항성능이비수청래,선전궤익익형불동우고정익,대선전궤익익형적설계화기동특성적연구구유실제의의。침대선전궤익익형전개유만도적전후대칭익형설계,통과아음속다공황수치계산사선출승조특성최우적익형---만도10%、후도12%적상철하요전후대칭익형GOE-10-12。위료험증수치계산적준학성,진행료3충저속공황(20 m/s、30 m/s、40 m/s)적풍동시험,결과표명수치계산화시험획득적승력계수화조력계수문합교호,신설계적익형구유량호적승조력특성,괄합응용우선전궤익。
An unmanned aerial vehicle ( UAV) with rotational wings is popular because it can take off and land vertically and cruise at high speed. The airfoil with rotational wings is different from the airfoil with fixed wings. The difference is significant for the design of the airfoil with rotational wings and for the study of its aerodynamic charac-teristics. Therefore, we design a cambered ( upper surface convex and lower surface concave/USCLSC) and fore-and-aft symmetrical airfoils for the UAV with rotational wings. The subsonic numerical calculation is performed to determine the airfoil with the optimal lift drag ratio, whose maximum camber is 10%, and maximum thickness is 12%. To verify the accuracy of the numerical calculation, we conduct wind tunnel tests under three low speed work conditions:V=20 m/s, 30 m/s and 40 m/s. The test results, given in Figs.3 through 9, and their analysis show preliminarily that the lift coefficient and drag coefficient obtained with the numerical calculation agree well with those obtained with the test results, which indicate that the airfoil we thus designed has good aerodynamic charac-teristics and is suitable for a rotational wing.