北京生物医学工程
北京生物醫學工程
북경생물의학공정
BEIJING BIOMEDICAL ENGINEERING
2014年
3期
247-252,268
,共7页
脉搏波信号%高频噪声%呼吸基线%小波变换
脈搏波信號%高頻譟聲%呼吸基線%小波變換
맥박파신호%고빈조성%호흡기선%소파변환
pulse wave signal%high-frequency noise%breathing baseline%wavelet analysis
光电容积脉搏波可用于血氧饱和度等人体生理参数的无创检测。由于信号采集过程中存在随机噪声等干扰及人体呼吸等生理活动,脉搏波信号中存在高频噪声和呼吸基线漂移,影响最终的人体生理参数测量精度。小波变换的多分辨性可使信号中的有用信息和噪声呈现出不同的特征。因此,本文提出采用基于小波变换的方法对脉搏波信号进行高频噪声和基线的消除。方法首先根据每层小波细节的能量分布和一个周期与整个多个周期的脉搏波信号最大分解层数确定分别代表高频噪声和呼吸基线的小波细节,然后同时消除了人体生理参数检测中脉搏波信号的高频噪声和呼吸基线。利用自行研制的光电容积脉搏波采集装置采集脉搏波信号,应用本文的方法同时消除信号中高频噪声和呼吸基线,并采用信号的频谱和交直流比 R进行结果评价。结果经过小波变换的处理之后信号频谱高频段幅值明显降低,交直流信号比 R的稳定性明显增强。结论小波变换有效地同时消除了高频噪声和呼吸基线,将有利于血氧饱和度等人体生理参数无创检测精度的提高。
光電容積脈搏波可用于血氧飽和度等人體生理參數的無創檢測。由于信號採集過程中存在隨機譟聲等榦擾及人體呼吸等生理活動,脈搏波信號中存在高頻譟聲和呼吸基線漂移,影響最終的人體生理參數測量精度。小波變換的多分辨性可使信號中的有用信息和譟聲呈現齣不同的特徵。因此,本文提齣採用基于小波變換的方法對脈搏波信號進行高頻譟聲和基線的消除。方法首先根據每層小波細節的能量分佈和一箇週期與整箇多箇週期的脈搏波信號最大分解層數確定分彆代錶高頻譟聲和呼吸基線的小波細節,然後同時消除瞭人體生理參數檢測中脈搏波信號的高頻譟聲和呼吸基線。利用自行研製的光電容積脈搏波採集裝置採集脈搏波信號,應用本文的方法同時消除信號中高頻譟聲和呼吸基線,併採用信號的頻譜和交直流比 R進行結果評價。結果經過小波變換的處理之後信號頻譜高頻段幅值明顯降低,交直流信號比 R的穩定性明顯增彊。結論小波變換有效地同時消除瞭高頻譟聲和呼吸基線,將有利于血氧飽和度等人體生理參數無創檢測精度的提高。
광전용적맥박파가용우혈양포화도등인체생리삼수적무창검측。유우신호채집과정중존재수궤조성등간우급인체호흡등생리활동,맥박파신호중존재고빈조성화호흡기선표이,영향최종적인체생리삼수측량정도。소파변환적다분변성가사신호중적유용신식화조성정현출불동적특정。인차,본문제출채용기우소파변환적방법대맥박파신호진행고빈조성화기선적소제。방법수선근거매층소파세절적능량분포화일개주기여정개다개주기적맥박파신호최대분해층수학정분별대표고빈조성화호흡기선적소파세절,연후동시소제료인체생리삼수검측중맥박파신호적고빈조성화호흡기선。이용자행연제적광전용적맥박파채집장치채집맥박파신호,응용본문적방법동시소제신호중고빈조성화호흡기선,병채용신호적빈보화교직류비 R진행결과평개。결과경과소파변환적처리지후신호빈보고빈단폭치명현강저,교직류신호비 R적은정성명현증강。결론소파변환유효지동시소제료고빈조성화호흡기선,장유리우혈양포화도등인체생리삼수무창검측정도적제고。
Objective Based on photoplethysmography can be used to noninvasively the physiological parameters of human such as oxygen saturation and so on.Because of the disturbance of random noise and breathing of human body in the process of signal acquisition,there is high-frequency noise and breathing baseline,which affects the final prediction accuracy of the physiological parameters of human,the resolution of wavelet transform can make the signal and noise shows different characteristics.Therefore wavelet analysis is employed, and then this can remove high-frequency noise and breathing baseline from pulse wave signal.Methods Based on the energy of wavelet details and the maximum decomposition of a period signal and the entire signal,we first confirm the details which represent high-frequency noise and breathing baseline.Then the high frequency noise and baseline of pulse wave signals in the human physiological parameter detection are eliminated.A self-developed measurement device is used to obtain the pulse wave signal and wavelet transform is adopted to decrease high-frequency noise and breathing baseline at the same time.And AC-DC modulation employs ratio to evaluate the effect.Results After the management of wavelet transform,the amplitude of high
<br> frequency declines and the stability of AC-DC modulation ratio enhances. Conclusions Wavelet transform can effectively and synchronously remove high-frequency noise and breathing baseline from pulse wave signal,which is
<br> beneficial for the improvement of the detection accuracy in the physiological parameters of human body.