中国水产科学
中國水產科學
중국수산과학
Journal of Fishery Sciences of China
2014年
4期
786-792
,共7页
李宁求%米彦飞%付小哲%林强%石存斌%邓国成%吴淑勤
李寧求%米彥飛%付小哲%林彊%石存斌%鄧國成%吳淑勤
리저구%미언비%부소철%림강%석존빈%산국성%오숙근
草鱼出血病%疫苗%免疫效果%风险评估模型%模糊层次分析法
草魚齣血病%疫苗%免疫效果%風險評估模型%模糊層次分析法
초어출혈병%역묘%면역효과%풍험평고모형%모호층차분석법
grass carp hemorrhage disease%vaccine%immune efficacy%risk assessment
应用模糊层次分析法,并结合流行病学调查、荟萃分析和德尔菲法,构建了由评估指标体系、风险因素权重、评分标准、综合评价函数等组成的草鱼出血病免疫预防风险评估模型,其中,评估指标体系包括疫苗品质(B1)、免疫程序(B2)、鱼体(B3)、池塘环境(B4)和饲养管理(B5)共5个准则层风险因素和疫苗品种(C1)、保存温度与有效期(C2)、运输存储条件(C3)、免疫时疫苗的存放(C4)、免疫时鱼体健康状态(C5)、免疫技术(C6)、免疫剂量(C7)、漏免的鱼数(C8)、鱼种来源(C9)、健康状态(C10)、鱼体规格(C11)、水温(C12)、溶氧(C13)、氨氮(C14)、亚硝酸盐(C15)、pH 值(C16)、透明度(C17)、水色(C18)、底泥厚度(C19)、载鱼量(C20)、搭配模式(C21)、药物的使用(C22)、饲料(C23)、青草投喂(C24)等24个指标层风险因素;5个准则层风险因素权重值集合为W={0.267;0.102;0.131;0.263;0.237},24个指标层风险因素绝对权重集合为W={0.138;0.059;0.046;0.024;0.035;0.018;0.027;0.022;0.040;0.054;0.037;0.076;0.037;0.032;0.030;0.027;0.018;0.019;0.024;0.104;0.024;0.027;0.062;0.020};分别建立了定性和定量评估指标的评分标准,并以综合评价函数GImΣi=1Ci·Pi表示风险评估结果。应用该模型评估了华南地区36个免疫池塘发病风险,结果显示,3个发病池塘风险值分别为0.572、0.638、0.617,处于高度风险级别,与未发病塘存在极显著差异(P<0.01),评估结果较准确,表明该模型可应用于草鱼出血病免疫预防管理和决策。
應用模糊層次分析法,併結閤流行病學調查、薈萃分析和德爾菲法,構建瞭由評估指標體繫、風險因素權重、評分標準、綜閤評價函數等組成的草魚齣血病免疫預防風險評估模型,其中,評估指標體繫包括疫苗品質(B1)、免疫程序(B2)、魚體(B3)、池塘環境(B4)和飼養管理(B5)共5箇準則層風險因素和疫苗品種(C1)、保存溫度與有效期(C2)、運輸存儲條件(C3)、免疫時疫苗的存放(C4)、免疫時魚體健康狀態(C5)、免疫技術(C6)、免疫劑量(C7)、漏免的魚數(C8)、魚種來源(C9)、健康狀態(C10)、魚體規格(C11)、水溫(C12)、溶氧(C13)、氨氮(C14)、亞硝痠鹽(C15)、pH 值(C16)、透明度(C17)、水色(C18)、底泥厚度(C19)、載魚量(C20)、搭配模式(C21)、藥物的使用(C22)、飼料(C23)、青草投餵(C24)等24箇指標層風險因素;5箇準則層風險因素權重值集閤為W={0.267;0.102;0.131;0.263;0.237},24箇指標層風險因素絕對權重集閤為W={0.138;0.059;0.046;0.024;0.035;0.018;0.027;0.022;0.040;0.054;0.037;0.076;0.037;0.032;0.030;0.027;0.018;0.019;0.024;0.104;0.024;0.027;0.062;0.020};分彆建立瞭定性和定量評估指標的評分標準,併以綜閤評價函數GImΣi=1Ci·Pi錶示風險評估結果。應用該模型評估瞭華南地區36箇免疫池塘髮病風險,結果顯示,3箇髮病池塘風險值分彆為0.572、0.638、0.617,處于高度風險級彆,與未髮病塘存在極顯著差異(P<0.01),評估結果較準確,錶明該模型可應用于草魚齣血病免疫預防管理和決策。
응용모호층차분석법,병결합류행병학조사、회췌분석화덕이비법,구건료유평고지표체계、풍험인소권중、평분표준、종합평개함수등조성적초어출혈병면역예방풍험평고모형,기중,평고지표체계포괄역묘품질(B1)、면역정서(B2)、어체(B3)、지당배경(B4)화사양관리(B5)공5개준칙층풍험인소화역묘품충(C1)、보존온도여유효기(C2)、운수존저조건(C3)、면역시역묘적존방(C4)、면역시어체건강상태(C5)、면역기술(C6)、면역제량(C7)、루면적어수(C8)、어충래원(C9)、건강상태(C10)、어체규격(C11)、수온(C12)、용양(C13)、안담(C14)、아초산염(C15)、pH 치(C16)、투명도(C17)、수색(C18)、저니후도(C19)、재어량(C20)、탑배모식(C21)、약물적사용(C22)、사료(C23)、청초투위(C24)등24개지표층풍험인소;5개준칙층풍험인소권중치집합위W={0.267;0.102;0.131;0.263;0.237},24개지표층풍험인소절대권중집합위W={0.138;0.059;0.046;0.024;0.035;0.018;0.027;0.022;0.040;0.054;0.037;0.076;0.037;0.032;0.030;0.027;0.018;0.019;0.024;0.104;0.024;0.027;0.062;0.020};분별건립료정성화정량평고지표적평분표준,병이종합평개함수GImΣi=1Ci·Pi표시풍험평고결과。응용해모형평고료화남지구36개면역지당발병풍험,결과현시,3개발병지당풍험치분별위0.572、0.638、0.617,처우고도풍험급별,여미발병당존재겁현저차이(P<0.01),평고결과교준학,표명해모형가응용우초어출혈병면역예방관리화결책。
Risk analysis has been used regularly in the management of aquatic animal health, resulting in increased success at preventing and controlling diseases. A number of factors affect the efficacy of a vaccine in aquaculture. Thus, it is important to identify these risk factors and estimate their weights. We developed a quantitative risk assessment model for the prevention for grass carp hemorrhage disease by analyzing epidemiological study data using the Delphi method and meta-analysis. The model was composed of a risk hierarchy system, weight and valuation standards for each risk factor, and an integrated evaluation function. The risk hierarchy system included 5 criterion layers and 24 in-dex layers. The criterion layers included vaccine quality (B1), immune program (B2), fish (B3), pond environment (B4), and care and management (B5) with a set of weight about W={0.267, 0.102, 0.131, 0.263, 0.237}. The index layer con-sisted of vaccine species(C1), storage temperature and expiration date(C2), storage and transportation conditions (C3), storage of the vaccine (C4), health status of the fry following vaccination(C5), vaccination technique(C6), vaccination dosage(C7), number of unimmunized fry (C8), source of fry (C9), health status of fish(C10), size of fish(C11), water temperature(C12), dissolved oxygen(C13), ammonia nitrogen(C14), nitrite(C15), pH (C16), water transparency(C17), water color(C18), thickness of mud(C19), rearing density(C20), culture type(C21), drug use(C22), feed(C23), and grass feed(C24) with a set of absolute weights about W={0.138, 0.059, 0.046, 0.024, 0.035, 0.018, 0.027, 0.022, 0.040, 0.054, 0.037, 0.076, 0.037, 0.032, 0.030, 0.027, 0.018, 0.019, 0.024, 0.104, 0.024, 0.027, 0.062, 0.020}. The results of the risk assessment were represented by the integrated evaluation function m GI=? × . Using vaccination data from south-CP ii i=1 west China to validate the model, the integrated evaluation value from three infected ponds was 0.572, 0.638, and 0.617. These values were significantly higher than values from non-infected ponds (P<0.01).The results of the risk assessment are consistent with the survey data. Thus, our model can be used to reduce the risk of grass carp hemorrhagic disease by allowing culturists to plan with more certainty for increased immune efficacy.