激光技术
激光技術
격광기술
LASER TECHNOLOGY
2014年
4期
463-468
,共6页
图像处理%医学图像融合%2维经验模态分解%2维内蕴模函数%脉冲耦合神经网络%特征提取
圖像處理%醫學圖像融閤%2維經驗模態分解%2維內蘊模函數%脈遲耦閤神經網絡%特徵提取
도상처리%의학도상융합%2유경험모태분해%2유내온모함수%맥충우합신경망락%특정제취
image processing%medical image fusion%bidimensional empirical mode decomposition%bidimensional intrinsic mode functions%pulse coupled neural network%feature extraction
为了提升医学图像融合质量,采用了一种基于2维经验模态分解( BEMD)特征分类和复合型脉冲耦合神经网络的医学图像融合算法。首先将多模医学图像经过BEMD分解成2维内蕴模函数( BIMF)和残差项,然后分别将BIMF层和残差项值输入脉冲耦合神经网络( PCNN)中,得到各自的点火映射图,再将相同点火次数的像素提取归类,点火次数大的对应图像纹理,归为纹理类,其余归为背景类;统计各个纹理类集合中的像素极值确定灰度分布范围,最后将两幅图像中纹理类像素集合处于灰度分布范围的像素通过PCNN进行融合,其它像素通过双通道PCNN进行融合。结果表明,该算法解决了PCNN对偏暗图像的处理效果不理想的问题,与传统融合算法相比,性能具有优势,且能够较大幅度提高融合图像的质量。
為瞭提升醫學圖像融閤質量,採用瞭一種基于2維經驗模態分解( BEMD)特徵分類和複閤型脈遲耦閤神經網絡的醫學圖像融閤算法。首先將多模醫學圖像經過BEMD分解成2維內蘊模函數( BIMF)和殘差項,然後分彆將BIMF層和殘差項值輸入脈遲耦閤神經網絡( PCNN)中,得到各自的點火映射圖,再將相同點火次數的像素提取歸類,點火次數大的對應圖像紋理,歸為紋理類,其餘歸為揹景類;統計各箇紋理類集閤中的像素極值確定灰度分佈範圍,最後將兩幅圖像中紋理類像素集閤處于灰度分佈範圍的像素通過PCNN進行融閤,其它像素通過雙通道PCNN進行融閤。結果錶明,該算法解決瞭PCNN對偏暗圖像的處理效果不理想的問題,與傳統融閤算法相比,性能具有優勢,且能夠較大幅度提高融閤圖像的質量。
위료제승의학도상융합질량,채용료일충기우2유경험모태분해( BEMD)특정분류화복합형맥충우합신경망락적의학도상융합산법。수선장다모의학도상경과BEMD분해성2유내온모함수( BIMF)화잔차항,연후분별장BIMF층화잔차항치수입맥충우합신경망락( PCNN)중,득도각자적점화영사도,재장상동점화차수적상소제취귀류,점화차수대적대응도상문리,귀위문리류,기여귀위배경류;통계각개문리류집합중적상소겁치학정회도분포범위,최후장량폭도상중문리류상소집합처우회도분포범위적상소통과PCNN진행융합,기타상소통과쌍통도PCNN진행융합。결과표명,해산법해결료PCNN대편암도상적처리효과불이상적문제,여전통융합산법상비,성능구유우세,차능구교대폭도제고융합도상적질량。
In order to improve the quality of medical fusion images , a novel medical image fusion algorithm based on bidimensional empirical mode decomposition ( BEMD ) feature classification and multi-pulse coupled neural network was proposed.Firstly, the multimodal medical images were decomposed into two-dimensional intrinsic mode functions (BIMF) and the residuals by means of BEMD , and then the BIMF layer and the residuals coefficients were put into pulse coupled neural network ( PCNN) to get their firing maps .The pixels with the same firing times were extracted and classified .The pixels with larger firing times were classified as texture and the rest were classified as the background .The extreme values of the texture collection were counted to determine the grayscale pixel distribution .Finally the pixels representing the texture were input into the PCNN and the other pixels were put into the dual-channel PCNN to get fusion coefficients .The experimental results show that the proposed algorithm has solved the problem of PCNN with superior performance comparing to the traditional fusion algorithms , which can improve the quality of the fused image .