采矿与安全工程学报
採礦與安全工程學報
채광여안전공정학보
JOURNAL OF MINING AND SAFETY ENGINEERING
2014年
4期
519-524
,共6页
李振雷%窦林名%王桂峰%蔡武%何江%丁言露
李振雷%竇林名%王桂峰%蔡武%何江%丁言露
리진뢰%두림명%왕계봉%채무%하강%정언로
微震监测%冲击矿压%孤岛面%覆岩运动%底鼓
微震鑑測%遲擊礦壓%孤島麵%覆巖運動%底鼓
미진감측%충격광압%고도면%복암운동%저고
microseismic monitoring%rock burst%island coalface%overburden movement%floor heaving
利用微震监测及现场冲击记录,对冲击震源、能量、显现区、显现范围及显现形式等进行定位与统计分析,总结冲击特征。通过理论建模与计算,从围岩体结构和应力状态2方面分析孤岛煤柱冲击机制。研究表明:60 m厚基本顶不破断及临空区覆岩“二次”运动使冲击震源均分布在临空区及其边沿;随孤岛面推进,煤体静载应力峰值逐渐增高并接近冲击临界应力,高静载应力与动载应力叠加达到并超过冲击临界应力使冲击频发;两巷靠近设计停采线部分为静载应力峰值区,该段巷道底板距15-3煤0~1 m,使该段巷道成为重复冲击显现区;机道应力高于风道,使机道显现次数多于风道,分别为6次和3次;巷道底板无支护,接近15-3煤,使显现形式主要为底鼓。该分析方法与思路为类似条件下的冲击治理提供借鉴。
利用微震鑑測及現場遲擊記錄,對遲擊震源、能量、顯現區、顯現範圍及顯現形式等進行定位與統計分析,總結遲擊特徵。通過理論建模與計算,從圍巖體結構和應力狀態2方麵分析孤島煤柱遲擊機製。研究錶明:60 m厚基本頂不破斷及臨空區覆巖“二次”運動使遲擊震源均分佈在臨空區及其邊沿;隨孤島麵推進,煤體靜載應力峰值逐漸增高併接近遲擊臨界應力,高靜載應力與動載應力疊加達到併超過遲擊臨界應力使遲擊頻髮;兩巷靠近設計停採線部分為靜載應力峰值區,該段巷道底闆距15-3煤0~1 m,使該段巷道成為重複遲擊顯現區;機道應力高于風道,使機道顯現次數多于風道,分彆為6次和3次;巷道底闆無支護,接近15-3煤,使顯現形式主要為底鼓。該分析方法與思路為類似條件下的遲擊治理提供藉鑒。
이용미진감측급현장충격기록,대충격진원、능량、현현구、현현범위급현현형식등진행정위여통계분석,총결충격특정。통과이론건모여계산,종위암체결구화응력상태2방면분석고도매주충격궤제。연구표명:60 m후기본정불파단급림공구복암“이차”운동사충격진원균분포재림공구급기변연;수고도면추진,매체정재응력봉치축점증고병접근충격림계응력,고정재응력여동재응력첩가체도병초과충격림계응력사충격빈발;량항고근설계정채선부분위정재응력봉치구,해단항도저판거15-3매0~1 m,사해단항도성위중복충격현현구;궤도응력고우풍도,사궤도현현차수다우풍도,분별위6차화3차;항도저판무지호,접근15-3매,사현현형식주요위저고。해분석방법여사로위유사조건하적충격치리제공차감。
Using microseismic monitoring and rock burst records, the burst source, burst energy, dam-age area, damage scope and damage form etc. were located and analyzed statistically in this paper, and rock burst characteristics were summarized. Meanwhile, by means of theoretical modeling and calcula-tion, rock burst mechanism in island pillar coalface was analyzed from the aspects of rock mass struc-ture and stress state. The results show that all the burst sources are located at the adjacent gob and its edge due to the no breaking of the 60-meter-thick main roof and the secondary-movement of the adja-cent gob overburden.With the coalface advancing, the maximum static stress within coal mass rises gradually and comes close to the critical stress. Thus, the superposition of such a high static stress and dynamic stress reaches the critical stress for rock burst, leading to frequent occurrence of rock burst. Both gateways near the designed ending line are the maximum static stress locating area. With a 0-1 m distance between the gateway floor and No.15-3 coal seam, this area has been damaged repeatedly when rock burst occurred. Because of a higher static stress, the headgate has been damaged 6 times, 3 times more than that of the tailgate. The main damage form of the gateway is floor heaving since the floor is without support and the distance between the floor and coal seam is small. The analysis in this paper may provide a reference to rock burst control with similar conditions.