农业工程学报
農業工程學報
농업공정학보
2014年
15期
197-205
,共9页
文韬%洪添胜%李立君%张南峰%李震%郭鑫
文韜%洪添勝%李立君%張南峰%李震%郭鑫
문도%홍첨성%리립군%장남봉%리진%곽흠
监测%害虫防治%机器视觉%橘小实蝇%团块跟踪%均值漂移%卡尔曼滤波
鑑測%害蟲防治%機器視覺%橘小實蠅%糰塊跟蹤%均值漂移%卡爾曼濾波
감측%해충방치%궤기시각%귤소실승%단괴근종%균치표이%잡이만려파
monitoring%pest control%computer vision%Bactrocera Dorsalis (Hendel)%blob tracking%mean shift%Kalman filter
为了实现橘小实蝇虫口密度的精准监测,该文将机器视觉技术作为田间橘小实蝇成虫入侵自动化监测的感知方法。通过对监测区域内运动目标和背景的颜色分析,提出了基于卡尔曼(Kalman)滤波的运动目标颜色均值漂移跟踪算法,优化了多目标运动轨迹跟踪效果。该算法通过图像处理和匹配技术提取了橘小实蝇成虫在虫口监测区域二维平面X轴和Y轴方向上的位置坐标和速度分量,推算了橘小实蝇成虫运动轨迹递推关系。基于动态系统的状态序列线性最小方差估计理论和成虫运动轨迹关系分析,构建了卡尔曼滤波状态估计模型,并建立其预测和修正方程实现了橘小实蝇成虫运动目标位置估计。通过在虫口监测区域开展单目标和多目标分散及粘连条件下的成虫跟踪试验,试验结果表明颜色均值漂移跟踪算法对橘小实蝇成虫单目标跟踪具有较好的适应性,成虫监测计数准确率达100%,对于多目标分散和粘连情况跟踪处理效果较差,计数准确率分别下降至86%和76%;通过在颜色空间均值漂移跟踪算法的基础上引入 Kalman 滤波器估算目标运动的近似位置,实现了对橘小实蝇成虫分散和粘连多目标运动的持续跟踪优化,监测计数准确率分别提升至96%和93%。机器视觉技术实时跟踪橘小实蝇成虫在虫口监测区域运动轨迹试验进一步验证了橘小实蝇成虫虫口密度监测的可行性,为田间橘小实蝇成虫发生自动化监测技术研究提供了参考。
為瞭實現橘小實蠅蟲口密度的精準鑑測,該文將機器視覺技術作為田間橘小實蠅成蟲入侵自動化鑑測的感知方法。通過對鑑測區域內運動目標和揹景的顏色分析,提齣瞭基于卡爾曼(Kalman)濾波的運動目標顏色均值漂移跟蹤算法,優化瞭多目標運動軌跡跟蹤效果。該算法通過圖像處理和匹配技術提取瞭橘小實蠅成蟲在蟲口鑑測區域二維平麵X軸和Y軸方嚮上的位置坐標和速度分量,推算瞭橘小實蠅成蟲運動軌跡遞推關繫。基于動態繫統的狀態序列線性最小方差估計理論和成蟲運動軌跡關繫分析,構建瞭卡爾曼濾波狀態估計模型,併建立其預測和脩正方程實現瞭橘小實蠅成蟲運動目標位置估計。通過在蟲口鑑測區域開展單目標和多目標分散及粘連條件下的成蟲跟蹤試驗,試驗結果錶明顏色均值漂移跟蹤算法對橘小實蠅成蟲單目標跟蹤具有較好的適應性,成蟲鑑測計數準確率達100%,對于多目標分散和粘連情況跟蹤處理效果較差,計數準確率分彆下降至86%和76%;通過在顏色空間均值漂移跟蹤算法的基礎上引入 Kalman 濾波器估算目標運動的近似位置,實現瞭對橘小實蠅成蟲分散和粘連多目標運動的持續跟蹤優化,鑑測計數準確率分彆提升至96%和93%。機器視覺技術實時跟蹤橘小實蠅成蟲在蟲口鑑測區域運動軌跡試驗進一步驗證瞭橘小實蠅成蟲蟲口密度鑑測的可行性,為田間橘小實蠅成蟲髮生自動化鑑測技術研究提供瞭參攷。
위료실현귤소실승충구밀도적정준감측,해문장궤기시각기술작위전간귤소실승성충입침자동화감측적감지방법。통과대감측구역내운동목표화배경적안색분석,제출료기우잡이만(Kalman)려파적운동목표안색균치표이근종산법,우화료다목표운동궤적근종효과。해산법통과도상처리화필배기술제취료귤소실승성충재충구감측구역이유평면X축화Y축방향상적위치좌표화속도분량,추산료귤소실승성충운동궤적체추관계。기우동태계통적상태서렬선성최소방차고계이론화성충운동궤적관계분석,구건료잡이만려파상태고계모형,병건립기예측화수정방정실현료귤소실승성충운동목표위치고계。통과재충구감측구역개전단목표화다목표분산급점련조건하적성충근종시험,시험결과표명안색균치표이근종산법대귤소실승성충단목표근종구유교호적괄응성,성충감측계수준학솔체100%,대우다목표분산화점련정황근종처리효과교차,계수준학솔분별하강지86%화76%;통과재안색공간균치표이근종산법적기출상인입 Kalman 려파기고산목표운동적근사위치,실현료대귤소실승성충분산화점련다목표운동적지속근종우화,감측계수준학솔분별제승지96%화93%。궤기시각기술실시근종귤소실승성충재충구감측구역운동궤적시험진일보험증료귤소실승성충충구밀도감측적가행성,위전간귤소실승성충발생자동화감측기술연구제공료삼고。
Bactrocera Dorsalis (Hendel) are invasive pests which occur frequently and are seriously harmful to the growth of fruit trees, and they have been ranked an important quarantine object in many countries and regions. The regular manual survey used as the routine predicting method for Bactrocera Dorsalis (Hendel) has not accomplished the requirement of real-time and precise monitoring and warning by means of the adult trapping and monitoring device deployed in orchards. With the development of science and technologies, the method of the automatic machine monitoring for pests has been studied including detection of sound characteristics, radar monitoring and spectral monitoring. Considering the characteristic with randomness, migratory and hiding for Bactrocera Dorsalis (Hendel), there were some problems such as timing, processing and costs in monitoring pests with the aid of combining the above monitoring and the traditional method. In order to accomplish precise monitoring for Bactrocera Dorsalis (Hendel), machine vision technologies were used as an in-field automatic detecting method for the Hendel adults in this paper. Considering the problem with tracking Bactrocera Dorsalis (Hendel) object disappearance in multi-objects with more closer condition by means of the mean shift algorithm in color space according to previous machine vision technology research results, the fusion algorithm based on mean shift and Kalman filter theories for moving objects was proposed for optimizing multi-objects moving trace tracking by means of colorful analysis for moving objects and background in monitoring zones. The recurrence relation of the adults moving trace was obtained, and position coordinate, X-component and Y-component of speed in the 2D plane were extracted by image processing and matching technologies in this algorithm. By analyzing the state sequence linear minimum variance estimate theory of dynamic system and recurrence relation of the adults moving trace, the model of state estimate based on a Kalman filter was built to achieve the position estimation of the adults using the prediction and modified equation of the model. The experiment of the adults tracking under the condition of single object and the condition of multi-objects with scatter and gathering indicated that the mean shift algorithm was adaptive to track the adults in the condition of single object with monitoring precision of 100%, was not adaptive to the condition of multi-objects with scatter and gathering since corresponding monitoring precisions were 86%and 76%respectively. The cooperation of mean shift and Kalman filter algorithm estimating of moving objects’ approximate location could achieve the stable and continuous tracking in the condition of multi-objects with scatter and gathering with corresponding monitoring precision of 96%and 93%. The real-time tracking experiment of the adults moving trace in pest monitoring zones by the aid of machine vision further validated the practicability of the Hendel adults population density monitoring for providing a theoretical and practical basis for in-field Hendel adults automatic monitoring technology studies.