中国组织工程研究
中國組織工程研究
중국조직공정연구
Journal of Clinical Rehabilitative Tissue Engineering Research
2014年
30期
4831-4837
,共7页
董静静%毕龙%李娜%郭誉%徐强%雷伟%崔赓
董靜靜%畢龍%李娜%郭譽%徐彊%雷偉%崔賡
동정정%필룡%리나%곽예%서강%뢰위%최갱
生物材料%骨生物材料%磷酸钙骨水泥%生物蛋白胶%骨缺损%生物力学%成骨细胞%增殖%碱性磷酸酶%骨再生%国家自然科学基金
生物材料%骨生物材料%燐痠鈣骨水泥%生物蛋白膠%骨缺損%生物力學%成骨細胞%增殖%堿性燐痠酶%骨再生%國傢自然科學基金
생물재료%골생물재료%린산개골수니%생물단백효%골결손%생물역학%성골세포%증식%감성린산매%골재생%국가자연과학기금
calcium phosphates%osteoblasts%fibrin tissue adhesive
背景:在多孔材料磷酸钙骨水泥粉末中复合纤维蛋白胶是否能有效改善磷酸钙骨水泥的生物力学性能,同时加速其在体内的降解代谢,促进体内骨再生,目前还未被证实。目的:构建不同配比的多孔磷酸钙骨水泥/纤维蛋白胶复合材料,探索其诱导成骨的生物学特性。方法:将磷酸钙骨水泥与纤维蛋白胶分别以1∶1、3∶1、5∶1(mL/g)的配比复合,以单纯的磷酸钙骨水泥为对照,检测各组材料的初凝和终凝时间、压缩强度与弹性模量,扫描电镜观察材料表面结构。将第3代成骨细胞分别接种于4组材料表面,以单纯培养细胞为空白对照,观察不同时间点细胞黏附、增殖及碱性磷酸酶活性。结果与结论:1∶1、3∶1复合材料组初凝时间和终凝时间长于对照组(P<0.05),5∶1组复合材料组初凝时间和终凝时间短于对照组(P<0.05)。磷酸钙骨水泥/纤维蛋白胶复合材料表面较单纯的磷酸钙骨水泥致密而光滑,孔径随着纤维蛋白胶浓度的增加而降低。3∶1、5∶1复合材料组压缩强度高于对照组(P<0.05),1∶1、3∶1、5∶1复合材料组弹性模量高于对照组(P<0.05)。4组材料上的细胞黏附、增殖及碱性磷酸酶活性差异无显著性意义,但均高于空白对照组(P<0.05)。表明纤维蛋白胶的加入克服了磷酸钙骨水泥脆性较高的缺点,同时也保留了其促进成骨的作用。
揹景:在多孔材料燐痠鈣骨水泥粉末中複閤纖維蛋白膠是否能有效改善燐痠鈣骨水泥的生物力學性能,同時加速其在體內的降解代謝,促進體內骨再生,目前還未被證實。目的:構建不同配比的多孔燐痠鈣骨水泥/纖維蛋白膠複閤材料,探索其誘導成骨的生物學特性。方法:將燐痠鈣骨水泥與纖維蛋白膠分彆以1∶1、3∶1、5∶1(mL/g)的配比複閤,以單純的燐痠鈣骨水泥為對照,檢測各組材料的初凝和終凝時間、壓縮彊度與彈性模量,掃描電鏡觀察材料錶麵結構。將第3代成骨細胞分彆接種于4組材料錶麵,以單純培養細胞為空白對照,觀察不同時間點細胞黏附、增殖及堿性燐痠酶活性。結果與結論:1∶1、3∶1複閤材料組初凝時間和終凝時間長于對照組(P<0.05),5∶1組複閤材料組初凝時間和終凝時間短于對照組(P<0.05)。燐痠鈣骨水泥/纖維蛋白膠複閤材料錶麵較單純的燐痠鈣骨水泥緻密而光滑,孔徑隨著纖維蛋白膠濃度的增加而降低。3∶1、5∶1複閤材料組壓縮彊度高于對照組(P<0.05),1∶1、3∶1、5∶1複閤材料組彈性模量高于對照組(P<0.05)。4組材料上的細胞黏附、增殖及堿性燐痠酶活性差異無顯著性意義,但均高于空白對照組(P<0.05)。錶明纖維蛋白膠的加入剋服瞭燐痠鈣骨水泥脆性較高的缺點,同時也保留瞭其促進成骨的作用。
배경:재다공재료린산개골수니분말중복합섬유단백효시부능유효개선린산개골수니적생물역학성능,동시가속기재체내적강해대사,촉진체내골재생,목전환미피증실。목적:구건불동배비적다공린산개골수니/섬유단백효복합재료,탐색기유도성골적생물학특성。방법:장린산개골수니여섬유단백효분별이1∶1、3∶1、5∶1(mL/g)적배비복합,이단순적린산개골수니위대조,검측각조재료적초응화종응시간、압축강도여탄성모량,소묘전경관찰재료표면결구。장제3대성골세포분별접충우4조재료표면,이단순배양세포위공백대조,관찰불동시간점세포점부、증식급감성린산매활성。결과여결론:1∶1、3∶1복합재료조초응시간화종응시간장우대조조(P<0.05),5∶1조복합재료조초응시간화종응시간단우대조조(P<0.05)。린산개골수니/섬유단백효복합재료표면교단순적린산개골수니치밀이광활,공경수착섬유단백효농도적증가이강저。3∶1、5∶1복합재료조압축강도고우대조조(P<0.05),1∶1、3∶1、5∶1복합재료조탄성모량고우대조조(P<0.05)。4조재료상적세포점부、증식급감성린산매활성차이무현저성의의,단균고우공백대조조(P<0.05)。표명섬유단백효적가입극복료린산개골수니취성교고적결점,동시야보류료기촉진성골적작용。
BACKGROUND:Fibrin glue introduced into calcium phosphate cement has not been confirmed whether this way could overcome the compressive limits and the low degradation of calcium phosphate cement and to modify the biological properties of calcium phosphate cement. OBJECTIVE:To explore the mechanical and biological properties of calcium phosphate cement/fibrin glue at different powder/liquid ratio for bone regeneration in vitro. METHODS:Calcium phosphate cement and fibrin glue were mixed at ratios of 1:1, 3:1, 5:1 (mL/g), and the pure calcium phosphate cement served as controls. Setting time, scanning electron microscope and the biomechanical test were used to analyze the composite scaffold structure, physical performance and the mechanical properties. Passage 3 osteoblasts were respectively inoculated on the material surface of the four groups, and pure cells served as blank controls. celladhesion, proliferation and alkaline phosphatase activity were observed. RESULTS AND CONCLUSION:The initial and final setting time of calcium phosphate cement/fibrin glue at 1:1 and 3:1 (mL/g) was higher than that in the control group (P<0.05), while the initial and final setting time of calcium phosphate cement/fibrin glue at 5:1 (mL/g) was lower than that of the control group (P<0.05). Scanning electron microscope showed smoother and denser surface of composite scaffolds compared with the pure calcium phosphate cement. The aperture of the composite scaffolds was decreased with the increasing concentration of fibrin glue. The compressive strength of composite scaffolds at 3:1 and 5:1 was higher than that of the control group (P<0.05), while the modulus of the composite scaffolds at 1:1, 3:1, 5:1 was higher than that of the control group (P<0.05). celladhesion, proliferation and alkaline phosphatase activity showed no difference among the three composite scaffold and control groups, but al higher than the blank control group (P<0.05). These findings indicate that fibrin glue introduced into calcium phosphate cement can overcome the low-strength limits of calcium phosphate cement, and maintain the good biological properties of calcium phosphate cement for bone regeneration.