中山大学学报(自然科学版)
中山大學學報(自然科學版)
중산대학학보(자연과학판)
ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS SUNYATSENI
2014年
4期
25-34
,共10页
刘迎军%杨志景%董健卫%李淑龙
劉迎軍%楊誌景%董健衛%李淑龍
류영군%양지경%동건위%리숙룡
经验模式分解%噪声%本征模函数%光滑样条%广义交叉验证
經驗模式分解%譟聲%本徵模函數%光滑樣條%廣義交扠驗證
경험모식분해%조성%본정모함수%광활양조%엄의교차험증
empirical mode decomposition%noise%intrinsic mode function%smoothing spline%general-ized cross validation
经验模式分解( Empirical Mode Decomposition , EMD)是近年来出现的一种自适应的信号分解算法,该方法受到了广泛的关注,被成功应用于许多领域。然而,当信号包含噪声时,它存在过度分解的弊端,容易受噪声的干扰,因而严重地限制了该方法的推广。为了解决这一问题,提出了一种改进的EMD方法:在首轮分解时,采用光滑样条拟合来代替原来的三次样条插值,可避免对噪声成分过度分解,从而极大地减少了噪声成分的干扰。仿真实验证实了新方法有显著的改进效果;两个实际气候数据序列分解的例子进一步说明了新方法的有效性和优越性。
經驗模式分解( Empirical Mode Decomposition , EMD)是近年來齣現的一種自適應的信號分解算法,該方法受到瞭廣汎的關註,被成功應用于許多領域。然而,噹信號包含譟聲時,它存在過度分解的弊耑,容易受譟聲的榦擾,因而嚴重地限製瞭該方法的推廣。為瞭解決這一問題,提齣瞭一種改進的EMD方法:在首輪分解時,採用光滑樣條擬閤來代替原來的三次樣條插值,可避免對譟聲成分過度分解,從而極大地減少瞭譟聲成分的榦擾。倣真實驗證實瞭新方法有顯著的改進效果;兩箇實際氣候數據序列分解的例子進一步說明瞭新方法的有效性和優越性。
경험모식분해( Empirical Mode Decomposition , EMD)시근년래출현적일충자괄응적신호분해산법,해방법수도료엄범적관주,피성공응용우허다영역。연이,당신호포함조성시,타존재과도분해적폐단,용역수조성적간우,인이엄중지한제료해방법적추엄。위료해결저일문제,제출료일충개진적EMD방법:재수륜분해시,채용광활양조의합래대체원래적삼차양조삽치,가피면대조성성분과도분해,종이겁대지감소료조성성분적간우。방진실험증실료신방법유현저적개진효과;량개실제기후수거서렬분해적례자진일보설명료신방법적유효성화우월성。
Recently , an adaptive method called Empirical mode decomposition ( EMD ) is proposed for signal analysis .It has attracted great deal of attention and been used in many areas successfully since its advent .However , when the signal is contaminated by noise , EMD suffers from the drawback of over de-composition and likely is affected by noise , which severely restricts its applications .In order to solve this problem , an improved version of EMD is proposed .During the first decomposition circle , the original cu-bic spline interpolation is replaced by the smoothing spline fitting , which can avoid the over decomposi-tion problem and then reduce the disturbance of noise component .Simulations validate the improvement of the new proposed method .Moreover , two real climate data examples show the effective and superiority of the new method for real signals .