兰州交通大学学报
蘭州交通大學學報
란주교통대학학보
JOURNAL OF LANZHOU JIAOTONG UNIVERSITY(Natural Sciences)
2014年
4期
30-35
,共6页
卫晓娟%李宁洲%周学舟%丁杰%丁旺才
衛曉娟%李寧洲%週學舟%丁傑%丁旺纔
위효연%리저주%주학주%정걸%정왕재
柴油机%故障诊断%RBF神经网络%引力搜索
柴油機%故障診斷%RBF神經網絡%引力搜索
시유궤%고장진단%RBF신경망락%인력수색
diesel engine%fault diagnosis%RBF neural network%improved gravitational search al-gorithm
为了解决 RBF神经网络的参数选择问题,以便提高柴油机故障诊断的精度,提出了一种基于引力搜索算法和 RBF神经网络相结合的智能故障诊断方法。该方法首先采用减聚类算法确定网络隐层单元数,然后提出改进引力搜索算法优化 RBF神经网络的参数。利用国际标准样本集对该方法进行分类测试,并将该方法应用于柴油机故障的诊断,仿真实验验证了该方法对柴油机故障的分类和诊断效果。
為瞭解決 RBF神經網絡的參數選擇問題,以便提高柴油機故障診斷的精度,提齣瞭一種基于引力搜索算法和 RBF神經網絡相結閤的智能故障診斷方法。該方法首先採用減聚類算法確定網絡隱層單元數,然後提齣改進引力搜索算法優化 RBF神經網絡的參數。利用國際標準樣本集對該方法進行分類測試,併將該方法應用于柴油機故障的診斷,倣真實驗驗證瞭該方法對柴油機故障的分類和診斷效果。
위료해결 RBF신경망락적삼수선택문제,이편제고시유궤고장진단적정도,제출료일충기우인력수색산법화 RBF신경망락상결합적지능고장진단방법。해방법수선채용감취류산법학정망락은층단원수,연후제출개진인력수색산법우화 RBF신경망락적삼수。이용국제표준양본집대해방법진행분류측시,병장해방법응용우시유궤고장적진단,방진실험험증료해방법대시유궤고장적분류화진단효과。
In order to solve the optimization of the parameters of RBF neural network to improve the accuracy of fault diagnosis of diesel engine,an intelligent fault diagnosis method based on the combination of gravitational search algorithm and RBF neural network is proposed.At first,the subtractive clustering algorithm is used to determine the number of hidden layer units,then the improved gravitational search algorithm is adopted to optimize the parameters of RBF neural net-work.UCI testing data sets are used to check the classification accuracy of the proposed method, and the proposed method is applied to fault diagnosis of diesel engine.Simulation results show that the proposed method is effective in classification and diagnosis of the faults of diesel engine.