电力科学与工程
電力科學與工程
전력과학여공정
INFORMATION ON ELECTRIC POWER
2014年
6期
59-65
,共7页
短期负荷预测%改进混沌理论%最小二乘支持向量机%自适应混沌粒子群
短期負荷預測%改進混沌理論%最小二乘支持嚮量機%自適應混沌粒子群
단기부하예측%개진혼돈이론%최소이승지지향량궤%자괄응혼돈입자군
short term load forecasting%improved chaos theory%LSSVR%ACPSO
针对现有混沌理论中嵌入维数和延迟时间的选取难以达到最优,局域预测时邻近预测点的选取不够准确,提出了改进的混沌理论:采用改进的C-C法找到嵌入维数和延迟时间;邻近预测点的选取根据参考相点的演化趋势进行判断。针对最小二乘支持向量回归机LSSVR参数难以确定,提出ACPSO-LSSVR:自适应混沌粒子群ACPSO一方面能根据群体早熟收敛程度和个体自适应值来调整惯性权重,另一方面能根据混沌变量的随机性和遍历性进行粒子的初始化,加快优化过程,防止局部极小。采用ACP-SO来优化LSSVR的待选参数,提高负荷预测的精度。实例分析验证了该方法的可行性和实用性。
針對現有混沌理論中嵌入維數和延遲時間的選取難以達到最優,跼域預測時鄰近預測點的選取不夠準確,提齣瞭改進的混沌理論:採用改進的C-C法找到嵌入維數和延遲時間;鄰近預測點的選取根據參攷相點的縯化趨勢進行判斷。針對最小二乘支持嚮量迴歸機LSSVR參數難以確定,提齣ACPSO-LSSVR:自適應混沌粒子群ACPSO一方麵能根據群體早熟收斂程度和箇體自適應值來調整慣性權重,另一方麵能根據混沌變量的隨機性和遍歷性進行粒子的初始化,加快優化過程,防止跼部極小。採用ACP-SO來優化LSSVR的待選參數,提高負荷預測的精度。實例分析驗證瞭該方法的可行性和實用性。
침대현유혼돈이론중감입유수화연지시간적선취난이체도최우,국역예측시린근예측점적선취불구준학,제출료개진적혼돈이론:채용개진적C-C법조도감입유수화연지시간;린근예측점적선취근거삼고상점적연화추세진행판단。침대최소이승지지향량회귀궤LSSVR삼수난이학정,제출ACPSO-LSSVR:자괄응혼돈입자군ACPSO일방면능근거군체조숙수렴정도화개체자괄응치래조정관성권중,령일방면능근거혼돈변량적수궤성화편력성진행입자적초시화,가쾌우화과정,방지국부겁소。채용ACP-SO래우화LSSVR적대선삼수,제고부하예측적정도。실례분석험증료해방법적가행성화실용성。
In view of the existing chaos theory, the selection of the embedding dimension and delay time is difficult to determine, the choose of adjacent estimate point is not accurate enough. So an improved chaos theory is presen-ted. On one hand, embedding dimension and delay time are determined via the improved C-C theory, the accu-rate embedding dimension is determined according to the forecasting result. On the other hand, the adjacent esti-mate points are determined according to the evolution trend of reference points. In view of the parameters of LSSVR is difficult to determine, ACPSO-LSSVR is presented. ACPSO can adjust inertia weight according to the premature convergence degree and the individual fitness. The initialization of the particles is made according to the random-ness and ergodicity of chaotic variables. The parameters of LSSVR are optimized according to ACPSO, so the pre-cision of load forecasting is improved. The example analysis proves the feasibility and practicability of the method.