中国安全生产科学技术
中國安全生產科學技術
중국안전생산과학기술
JOURNAL OF SAFETY SCIENCE AND TECHNOLOGY
2014年
7期
123-129
,共7页
公路隧道%水砂突涌%PSO-SVM%预测分析
公路隧道%水砂突湧%PSO-SVM%預測分析
공로수도%수사돌용%PSO-SVM%예측분석
road tunnel%water and sand inrush%PSO-SVM%prediction and analysis
复杂工程地质条件下,隧道水砂混合物突涌的预测防控是隧道安全建设的基础,准确预测水砂混合物突涌量,为工程提供安全保障至关重要。为提高预测准确性,提出一种基于粒子群算法优化的支持向量机( PSO-SVM)的隧道水砂突涌量预测模型。综合考虑地质构造、气象条件、施工影响三类因素,选取七个因子,结合某公路隧道,利用PSO-SVM建立隧道水砂突涌量预测模型,并对该隧道水砂突涌量进行预测,结果与实际突涌量一致。证实综合粒子群算法和支持向量机优势的PSO-SVM方法预测精度高,且易于实现,为类似隧道工程突涌预测提供参考与借鉴。
複雜工程地質條件下,隧道水砂混閤物突湧的預測防控是隧道安全建設的基礎,準確預測水砂混閤物突湧量,為工程提供安全保障至關重要。為提高預測準確性,提齣一種基于粒子群算法優化的支持嚮量機( PSO-SVM)的隧道水砂突湧量預測模型。綜閤攷慮地質構造、氣象條件、施工影響三類因素,選取七箇因子,結閤某公路隧道,利用PSO-SVM建立隧道水砂突湧量預測模型,併對該隧道水砂突湧量進行預測,結果與實際突湧量一緻。證實綜閤粒子群算法和支持嚮量機優勢的PSO-SVM方法預測精度高,且易于實現,為類似隧道工程突湧預測提供參攷與藉鑒。
복잡공정지질조건하,수도수사혼합물돌용적예측방공시수도안전건설적기출,준학예측수사혼합물돌용량,위공정제공안전보장지관중요。위제고예측준학성,제출일충기우입자군산법우화적지지향량궤( PSO-SVM)적수도수사돌용량예측모형。종합고필지질구조、기상조건、시공영향삼류인소,선취칠개인자,결합모공로수도,이용PSO-SVM건립수도수사돌용량예측모형,병대해수도수사돌용량진행예측,결과여실제돌용량일치。증실종합입자군산법화지지향량궤우세적PSO-SVM방법예측정도고,차역우실현,위유사수도공정돌용예측제공삼고여차감。
The prediction and prevention of water and sand mixture inrush in tunnel under complicated geological conditions is the foundation of tunnel safety construction. Predicting the inrush quantity of water and sand mixture accurately is quite important for providing safety support to engineering. In order to improve the prediction accura-cy,the forecasting model for inrush quantity of water and sand mixture based on support vector machine combined with particle swarm algorithm optimization( PSO-SVM)was presented. Taking a road tunnel as engineering back-ground,the geological structure,meteorological conditions and construction influence factors were selected as the major elements by considering of seven determiners,the forecasting model of tunnel water and sand inrushing was established based on PSO-SVM. The prediction process by the model was conducted and the well-pleasing results were acquired. The results showed that the comprehensive method can effectively improve the performance of pre-diction. Based on above conclusion,PSO-SVM is an approving method,and easily to be implemented,which pro-vides a significant technical mean for prediction of water and sand mixture inrush in tunnel,and presents notably useful reference value for engineering practice.