中国环境科学
中國環境科學
중국배경과학
CHINA ENVIRONMENTAL SCIENCE
2014年
7期
1722-1727
,共6页
委燕%王淑莹%马斌%李夕耀%何岳兰%彭永臻
委燕%王淑瑩%馬斌%李夕耀%何嶽蘭%彭永臻
위연%왕숙형%마빈%리석요%하악란%팽영진
污水处理%生物脱氮%反硝化%温室气体氧化亚氮(N2O)%抑制%亚硝酸盐
汙水處理%生物脫氮%反硝化%溫室氣體氧化亞氮(N2O)%抑製%亞硝痠鹽
오수처리%생물탈담%반초화%온실기체양화아담(N2O)%억제%아초산염
wastewater treatment%biological nitrogen removal%denitrification%greenhouse gas nitrous oxide (N2O)%inhibition%nitrite
本试验通过批次试验考察了亚硝酸盐对外碳源反硝化过程N2O还原的影响.结果表明NO2--N初始浓度为5.92~35.23mg/L时,随着NO2--N浓度的增加,反硝化过程中N2O的积累量逐渐增加;当NO2--N浓度为35.23mg/L时,NO2--N还原量的46.26%被转化为N2O.通过对比试验得出,N2O还原酶与亚硝酸盐还原酶对电子的竞争和游离亚硝酸(FNA)对N2O还原酶的抑制会导致N2O比还原速率下降,造成反硝化过程N2O积累.基于上述试验结果提出,污水处理厂可通过调控运行条件控制NO2--N浓度,降低反硝化过程的N2O的产生与释放;也可以通过短程硝化提高NO2--N浓度,促进反硝化过程N2O的积累,再通过N2O氧化甲烷减少N2O排放,同时提高产能37%.
本試驗通過批次試驗攷察瞭亞硝痠鹽對外碳源反硝化過程N2O還原的影響.結果錶明NO2--N初始濃度為5.92~35.23mg/L時,隨著NO2--N濃度的增加,反硝化過程中N2O的積纍量逐漸增加;噹NO2--N濃度為35.23mg/L時,NO2--N還原量的46.26%被轉化為N2O.通過對比試驗得齣,N2O還原酶與亞硝痠鹽還原酶對電子的競爭和遊離亞硝痠(FNA)對N2O還原酶的抑製會導緻N2O比還原速率下降,造成反硝化過程N2O積纍.基于上述試驗結果提齣,汙水處理廠可通過調控運行條件控製NO2--N濃度,降低反硝化過程的N2O的產生與釋放;也可以通過短程硝化提高NO2--N濃度,促進反硝化過程N2O的積纍,再通過N2O氧化甲烷減少N2O排放,同時提高產能37%.
본시험통과비차시험고찰료아초산염대외탄원반초화과정N2O환원적영향.결과표명NO2--N초시농도위5.92~35.23mg/L시,수착NO2--N농도적증가,반초화과정중N2O적적루량축점증가;당NO2--N농도위35.23mg/L시,NO2--N환원량적46.26%피전화위N2O.통과대비시험득출,N2O환원매여아초산염환원매대전자적경쟁화유리아초산(FNA)대N2O환원매적억제회도치N2O비환원속솔하강,조성반초화과정N2O적루.기우상술시험결과제출,오수처리엄가통과조공운행조건공제NO2--N농도,강저반초화과정적N2O적산생여석방;야가이통과단정초화제고NO2--N농도,촉진반초화과정N2O적적루,재통과N2O양화갑완감소N2O배방,동시제고산능37%.
In this study, the effect of nitrite on N2O reduction during denitrification using external carbon sources was investigated in batch tests. The results showed that N2O accumulation grew with increase of the initial nitrite concentration at levels of 5.92~35.23mg/L. Specially, when NO2--N was 35.23mg/L, the N2O produced accounted for 46.26% of the total reduced nitrite. By contrast, the N2O accumulation during denitrification was attributed to the decrease of specific reduction rate due to the synergistic reactionof the free nitrous acid (FNA) inhibition and the electron competition between N2O reductase and nitrite reductase. These findings suggest that the N2O emission control could be achieved by decreasing nitrite concentration through the operation optimization. Moreover, N2O could be used to oxidize methane for increasing energy production by 37% and reducing N2O emission, which could be achieved by increasing nitrite concentration via nitritation.