系统工程与电子技术
繫統工程與電子技術
계통공정여전자기술
SYSTEMS ENGINEERING AND ELECTRONICS
2014年
7期
1439-1445
,共7页
付梦印%靳璐%王美玲%杨毅
付夢印%靳璐%王美玲%楊毅
부몽인%근로%왕미령%양의
最大类间方差%峰值自适应方法%粒子群优化算法%误分类误差
最大類間方差%峰值自適應方法%粒子群優化算法%誤分類誤差
최대류간방차%봉치자괄응방법%입자군우화산법%오분류오차
maximum between-class variance (MBCV)%peak adaptive method%particle swarm optimiza-tion (PSO)algorithm%misclassification error(ME)
针对当前车底阴影分割算法在复杂环境下鲁棒性较差以及最大类间方差(maximum between-class variance,MBCV)多阈值分割算法不能自动确定阈值个数的问题,提出利用峰值自适应方法自动确定 MBCV 多阈值分割算法中阈值个数;然后,以阈值的个数为粒子群优化算法(particle swarm optimization,PSO)中粒子的维数,提出了一种改进的 PSO-MBCV 算法的车底阴影分割。实验结果表明,该算法能有较低的误分类误差,能有效地分割出车底阴影。
針對噹前車底陰影分割算法在複雜環境下魯棒性較差以及最大類間方差(maximum between-class variance,MBCV)多閾值分割算法不能自動確定閾值箇數的問題,提齣利用峰值自適應方法自動確定 MBCV 多閾值分割算法中閾值箇數;然後,以閾值的箇數為粒子群優化算法(particle swarm optimization,PSO)中粒子的維數,提齣瞭一種改進的 PSO-MBCV 算法的車底陰影分割。實驗結果錶明,該算法能有較低的誤分類誤差,能有效地分割齣車底陰影。
침대당전차저음영분할산법재복잡배경하로봉성교차이급최대류간방차(maximum between-class variance,MBCV)다역치분할산법불능자동학정역치개수적문제,제출이용봉치자괄응방법자동학정 MBCV 다역치분할산법중역치개수;연후,이역치적개수위입자군우화산법(particle swarm optimization,PSO)중입자적유수,제출료일충개진적 PSO-MBCV 산법적차저음영분할。실험결과표명,해산법능유교저적오분류오차,능유효지분할출차저음영。
The current segmentation algorithms of bottom shadow of vehicle have poor robustness,mean-while,the multilevel thresholds segmentation algorithm of maximum between-class variance (MBCV)method does not determine automatically the number of the thresholds.Therefore,firstly,the peak adaptive method based on image histogram is used to determine the number of thresholds;then,the number is considered as the particle dimension of the particle swarm optimization (PSO)algorithm,and the bottom shadow of vehicles based on an improved PSO-MBCV algorithm is proposed.The results show that the misclassification error (ME)can be deduced and the bottom shadow of vehicles can be effectively segmented.