系统工程与电子技术
繫統工程與電子技術
계통공정여전자기술
SYSTEMS ENGINEERING AND ELECTRONICS
2014年
7期
1358-1367
,共10页
风险型模糊多属性决策%累积前景理论%模糊结构元%方案排序
風險型模糊多屬性決策%纍積前景理論%模糊結構元%方案排序
풍험형모호다속성결책%루적전경이론%모호결구원%방안배서
risky fuzzy multiple attribute decision making%cumulative prospect theory%fuzzy structured ele-ment%alternative ranking
针对考虑决策者给出参照点情形的风险型模糊多属性决策问题,给出了基于累积前景理论的决策方法。首先给出了一种基于模糊结构元的模糊数排序方法;然后,将模糊决策信息转化为一种由模糊结构元表示的信息;进一步地,考虑决策者的心理行为因素并依据累积前景理论将不同自然状态下所对应的由模糊结构元表示的益损值转化为模糊前景价值;在此基础上,通过计算每个方案的综合模糊累积前景值并运用基于模糊结构元的模糊数排序方法对其进行排序,从而得到方案排序结果。最后,通过一个算例分析验证了该方法的可行性及有效性。
針對攷慮決策者給齣參照點情形的風險型模糊多屬性決策問題,給齣瞭基于纍積前景理論的決策方法。首先給齣瞭一種基于模糊結構元的模糊數排序方法;然後,將模糊決策信息轉化為一種由模糊結構元錶示的信息;進一步地,攷慮決策者的心理行為因素併依據纍積前景理論將不同自然狀態下所對應的由模糊結構元錶示的益損值轉化為模糊前景價值;在此基礎上,通過計算每箇方案的綜閤模糊纍積前景值併運用基于模糊結構元的模糊數排序方法對其進行排序,從而得到方案排序結果。最後,通過一箇算例分析驗證瞭該方法的可行性及有效性。
침대고필결책자급출삼조점정형적풍험형모호다속성결책문제,급출료기우루적전경이론적결책방법。수선급출료일충기우모호결구원적모호수배서방법;연후,장모호결책신식전화위일충유모호결구원표시적신식;진일보지,고필결책자적심리행위인소병의거루적전경이론장불동자연상태하소대응적유모호결구원표시적익손치전화위모호전경개치;재차기출상,통과계산매개방안적종합모호루적전경치병운용기우모호결구원적모호수배서방법대기진행배서,종이득도방안배서결과。최후,통과일개산례분석험증료해방법적가행성급유효성。
A method based on cumulative prospect theory is proposed to solve the risky fuzzy multiple at-tribute decision making problems with decision maker’s reference points.First,a ranking method for the fuzzy numbers is given based on the fuzzy structured element.Then,the fuzzy decision information is transformed in-to the information represented by the fuzzy structured element.Furthermore,the psychological behavioral fac-tors of decision makers are considered in decision analysis,and the gains-losses values expressed in the fuzzy structured element are transformed into the fuzzy prospect values with regard to the different natural states based on the cumulative prospect theory.On this basis,the comprehensive fuzzy cumulative prospect value of each alternative can be calculated.The ranking result of the comprehensive fuzzy cumulative prospect values of the alternatives is obtained based on the proposed ranking method for the fuzzy numbers,and the ranking result of the whole alternatives can be obtained.Finally,a numerical example is used to illustrate the feasibility and validity of the proposed method.