北京科技大学学报
北京科技大學學報
북경과기대학학보
JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING
2014年
7期
931-937
,共7页
张勇%陈腾飞%张建%黄淑荣%高海丽%王力臻%宋延华%张林森%李晓峰
張勇%陳騰飛%張建%黃淑榮%高海麗%王力臻%宋延華%張林森%李曉峰
장용%진등비%장건%황숙영%고해려%왕력진%송연화%장림삼%리효봉
石墨烯%无序结构%制备%电化学行为%电容器
石墨烯%無序結構%製備%電化學行為%電容器
석묵희%무서결구%제비%전화학행위%전용기
graphene%amorphous structure%preparation%electrochemical behavior%capacitors
以鳞片石墨为原料,采用化学氧化还原法制备了高品质的石墨烯.借助X射线衍射分析、扫描电子显微镜和透射电子显微镜观察、氮气吸附-脱附实验、恒流充放电实验、循环伏安法和交流阻抗谱技术对石墨烯的结构、形貌、表面性能和超级电容性能进行了系统研究. X射线衍射、扫描电镜和透射电镜结果表明,石墨烯整体上呈现无序结构,外观具有蓬松、透明的薄纱状及本征性皱褶,其BET比表面积为14.2 m2·g-1,总孔容为0.06 cm3·g-1,平均孔径为17.3 nm.交流阻抗谱测试结果表明,石墨烯电极具有较小的阻抗,其等效串联电阻为0.16Ω,电荷传递电阻为0.55Ω.恒流充放电和循环伏安测试结果显示:石墨烯电极具有良好的功率特性和循环稳定性,电容特征显著.在2、5、10和20 mV·s-1扫描速度下的放电比电容分别为123、113、101和89 F·g-1;即使是50 mV·s-1的高扫速,放电比电容仍可达69 F·g-1.
以鱗片石墨為原料,採用化學氧化還原法製備瞭高品質的石墨烯.藉助X射線衍射分析、掃描電子顯微鏡和透射電子顯微鏡觀察、氮氣吸附-脫附實驗、恆流充放電實驗、循環伏安法和交流阻抗譜技術對石墨烯的結構、形貌、錶麵性能和超級電容性能進行瞭繫統研究. X射線衍射、掃描電鏡和透射電鏡結果錶明,石墨烯整體上呈現無序結構,外觀具有蓬鬆、透明的薄紗狀及本徵性皺褶,其BET比錶麵積為14.2 m2·g-1,總孔容為0.06 cm3·g-1,平均孔徑為17.3 nm.交流阻抗譜測試結果錶明,石墨烯電極具有較小的阻抗,其等效串聯電阻為0.16Ω,電荷傳遞電阻為0.55Ω.恆流充放電和循環伏安測試結果顯示:石墨烯電極具有良好的功率特性和循環穩定性,電容特徵顯著.在2、5、10和20 mV·s-1掃描速度下的放電比電容分彆為123、113、101和89 F·g-1;即使是50 mV·s-1的高掃速,放電比電容仍可達69 F·g-1.
이린편석묵위원료,채용화학양화환원법제비료고품질적석묵희.차조X사선연사분석、소묘전자현미경화투사전자현미경관찰、담기흡부-탈부실험、항류충방전실험、순배복안법화교류조항보기술대석묵희적결구、형모、표면성능화초급전용성능진행료계통연구. X사선연사、소묘전경화투사전경결과표명,석묵희정체상정현무서결구,외관구유봉송、투명적박사상급본정성추습,기BET비표면적위14.2 m2·g-1,총공용위0.06 cm3·g-1,평균공경위17.3 nm.교류조항보측시결과표명,석묵희전겁구유교소적조항,기등효천련전조위0.16Ω,전하전체전조위0.55Ω.항류충방전화순배복안측시결과현시:석묵희전겁구유량호적공솔특성화순배은정성,전용특정현저.재2、5、10화20 mV·s-1소묘속도하적방전비전용분별위123、113、101화89 F·g-1;즉사시50 mV·s-1적고소속,방전비전용잉가체69 F·g-1.
High quality graphene material was prepared from flake graphite by chemical oxidation-reduction process. Its micro-structure, morphology, surface properties and supercapacitive performance were characterized by X-ray diffraction ( XRD) analysis, scanning electron microscopy ( SEM) , transmission electron microscopy ( TEM) , Brumauer-Emmett-Teller ( BET) analysis, galvanos-tatic charge/discharge test, cyclic voltammetry ( CV) , and electrochemical impedance spectroscopy ( EIS) . XRD results show that the crystal structure of the graphene is amorphous. SEM and TEM images show that the graphene plays flake-like shapes with wrinkles and ripples. Moreover, the graphene has porous structure with a BET specific surface area of 14. 2 m2·g-1 , total pore volume of 0. 06 cm3 ·g-1 , and average pore diameter of 17. 3 nm. EIS results show that the graphene electrode has a smaller impedance, the equivalent se-ries resistance is 0. 16Ω, and the charge transfer resistance is 0. 55Ω. Galvanostatic charge/discharge test and CV analysis indicate that the graphene exhibits enhanced capacitance, high current charge/discharge characteristics, and stable cycle life as a supercapaci-tor electrode. It delivers the discharge specific capacities of 123, 113, 101 and 89 F·g-1 at the scan rates of 2, 5, 10, and 20 mV· s-1 , respectively. Even though the scan rate is 50 mV·s-1 , the discharge specific capacity retains 69 F·g-1 .