吉林大学学报(理学版)
吉林大學學報(理學版)
길림대학학보(이학판)
JOURNAL OF JILIN UNIVERSITY(SCIENCE EDITION)
2014年
4期
687-692
,共6页
非光滑多目标规划%有效解%广义V-r-Ⅰ型不变凸%充分最优性条件%混合型对偶
非光滑多目標規劃%有效解%廣義V-r-Ⅰ型不變凸%充分最優性條件%混閤型對偶
비광활다목표규화%유효해%엄의V-r-Ⅰ형불변철%충분최우성조건%혼합형대우
nonsmooth multiobjective programming%efficient solution%generalized V-r-type-Ⅰinvexity%sufficient optimality conditions%mixed duality
通过给出非光滑多目标规划问题的广义 V-r-Ⅰ型不变凸概念,在广义 V-r-Ⅰ型不变凸条件下得到了可行解为有效解的 Fritz-John 和 Karush-Kuhn-Tuker 充分条件,并建立了混合型对偶问题,证明了弱对偶与严格逆对偶定理。
通過給齣非光滑多目標規劃問題的廣義 V-r-Ⅰ型不變凸概唸,在廣義 V-r-Ⅰ型不變凸條件下得到瞭可行解為有效解的 Fritz-John 和 Karush-Kuhn-Tuker 充分條件,併建立瞭混閤型對偶問題,證明瞭弱對偶與嚴格逆對偶定理。
통과급출비광활다목표규화문제적엄의 V-r-Ⅰ형불변철개념,재엄의 V-r-Ⅰ형불변철조건하득도료가행해위유효해적 Fritz-John 화 Karush-Kuhn-Tuker 충분조건,병건립료혼합형대우문제,증명료약대우여엄격역대우정리。
Based on a new class of concept of generalized V-r-type-Ⅰ invexity defined for nonsmooth multiobjective programming problems, Fritz-John and Karush-Kuhn-Tuker sufficiently optimal conditions were obtained for a feasible point to be an efficient solution.Moreover,a mixed type dual was formulated and weak duality and strict converse duality theorems were proved.