吉林大学学报(理学版)
吉林大學學報(理學版)
길림대학학보(이학판)
JOURNAL OF JILIN UNIVERSITY(SCIENCE EDITION)
2014年
4期
667-671
,共5页
分数阶微分方程%边值问题%正解%存在性定理%不动点定理
分數階微分方程%邊值問題%正解%存在性定理%不動點定理
분수계미분방정%변치문제%정해%존재성정리%불동점정리
fractional differential equation%boundary-value problem%positive solution%existence theorem%fixed-point theorem
考虑分数阶半正边值问题:Dα0+u(t)=λf (t,u(t)),0< t <1, u(0)=u(1)=u′(0)=u′(1)=0正解的存在性。其中:3<α≤4是一个实数;D没有数值下界。应用 Krasnosel’skii 不动点定理证明该方程一个正解的存在性。
攷慮分數階半正邊值問題:Dα0+u(t)=λf (t,u(t)),0< t <1, u(0)=u(1)=u′(0)=u′(1)=0正解的存在性。其中:3<α≤4是一箇實數;D沒有數值下界。應用 Krasnosel’skii 不動點定理證明該方程一箇正解的存在性。
고필분수계반정변치문제:Dα0+u(t)=λf (t,u(t)),0< t <1, u(0)=u(1)=u′(0)=u′(1)=0정해적존재성。기중:3<α≤4시일개실수;D몰유수치하계。응용 Krasnosel’skii 불동점정리증명해방정일개정해적존재성。
We studied a positive solution of the semipositone boundary value problem of fractional differential equation:Dα0+u(t)=λf (t,u(t)), 0 < t < 1, u(0)=u(1)=u′(0)=u′(1)=0, where 3<α≤4 is a real number,and Dα0+ is the standard Riemann-Liouville differentiation,and the nonlinear term has no numerical lower bound.We gave an existence theorem of this equation by means of the Krasnosel’skii fixed-point theorem on a cone.