北华大学学报(自然科学版)
北華大學學報(自然科學版)
북화대학학보(자연과학판)
JOURNAL OF BEIHUA UNIVERSITY(NATURAL SCIENCE)
2014年
4期
433-437
,共5页
三阶非线性微分方程%奇异边值问题%正解
三階非線性微分方程%奇異邊值問題%正解
삼계비선성미분방정%기이변치문제%정해
third-order nonlinear differential equation%singular boundary value problem%positive solution
研究三阶非线性奇异边值问题y?(t)= f(t,y,-y′),t∈(0,1),y(1)= y′(0)= y″(1)=0正解的存在性,其中f(t,y1,y2):(0,1)×(0,¥)2→(0,¥)连续,且f(t,y1,y2)在t =0,t =1和y1= y2=0处可能有奇性。运用一个锥上的不动点定理,给出上述边值问题存在正解的充分条件。
研究三階非線性奇異邊值問題y?(t)= f(t,y,-y′),t∈(0,1),y(1)= y′(0)= y″(1)=0正解的存在性,其中f(t,y1,y2):(0,1)×(0,¥)2→(0,¥)連續,且f(t,y1,y2)在t =0,t =1和y1= y2=0處可能有奇性。運用一箇錐上的不動點定理,給齣上述邊值問題存在正解的充分條件。
연구삼계비선성기이변치문제y?(t)= f(t,y,-y′),t∈(0,1),y(1)= y′(0)= y″(1)=0정해적존재성,기중f(t,y1,y2):(0,1)×(0,¥)2→(0,¥)련속,차f(t,y1,y2)재t =0,t =1화y1= y2=0처가능유기성。운용일개추상적불동점정리,급출상술변치문제존재정해적충분조건。
The existence of positive solution for certain class of singular nonlinear boundary value problem y?( t)=f(t,y,-y′),t∈(0,1),y(1)=y′(0)=y″(1)=0, is studied,where f(t,y1,y2):(0,1)×(0,¥)2→(0,¥) is continuous and f(t,y1,y2) may be singular at t=0,t=1 and y1=y2=0. By using a fixed point theorem for cones, a sufficient condition for the existence of a positive solution is presented.