岩石力学与工程学报
巖石力學與工程學報
암석역학여공정학보
CHINESE JOURNAL OF ROCK MECHANICS AND ENGINEERING
2014年
8期
1702-1710
,共9页
褚卫江%张春生%陈平志%程武伟%张晨%刘宁
褚衛江%張春生%陳平誌%程武偉%張晨%劉寧
저위강%장춘생%진평지%정무위%장신%류저
水利工程%原位试验%深埋隧洞%岩石应力%光纤光栅%声发射
水利工程%原位試驗%深埋隧洞%巖石應力%光纖光柵%聲髮射
수리공정%원위시험%심매수동%암석응력%광섬광책%성발사
hydraulic engineering%insitu test%deep tunnel%rock stress%fiber Bragg grating%acoustic emission
在已有研究的基础上介绍原位试验的监测成果。本次原位试验显示引水隧洞掘进过程中,掌子面前方1.2倍洞径的围岩即会产生位移和应力变化,同时也会产生一些微破裂,掌子面后方0~10 m的范围是应力变化最剧烈的区段。声发射监测显示掌子面前方-5 m至掌子面后方10 m的范围是围岩损伤破裂密集产生的区段,掌子面后方超过10 m区段围岩的损伤破裂基本趋于稳定。光纤光栅监测成果显示靠近洞壁破围岩损伤比较严重的区域会出现滞后破裂现象,即掌子面效应完全消失后,一些浅表层的微裂纹会仍会形成宏观裂纹。引水隧洞开挖后右侧拱肩的围岩损伤最为严重,深度约3 m。多点位移计测试成果显示隧洞开挖过程中围岩的变形问题并不突出,深埋隧洞的监测工作应以松动圈测试、锚杆应力监测、围岩应力监测、光纤光栅监测和声发射监测为主,辅以适量的多点位移计监测。
在已有研究的基礎上介紹原位試驗的鑑測成果。本次原位試驗顯示引水隧洞掘進過程中,掌子麵前方1.2倍洞徑的圍巖即會產生位移和應力變化,同時也會產生一些微破裂,掌子麵後方0~10 m的範圍是應力變化最劇烈的區段。聲髮射鑑測顯示掌子麵前方-5 m至掌子麵後方10 m的範圍是圍巖損傷破裂密集產生的區段,掌子麵後方超過10 m區段圍巖的損傷破裂基本趨于穩定。光纖光柵鑑測成果顯示靠近洞壁破圍巖損傷比較嚴重的區域會齣現滯後破裂現象,即掌子麵效應完全消失後,一些淺錶層的微裂紋會仍會形成宏觀裂紋。引水隧洞開挖後右側拱肩的圍巖損傷最為嚴重,深度約3 m。多點位移計測試成果顯示隧洞開挖過程中圍巖的變形問題併不突齣,深埋隧洞的鑑測工作應以鬆動圈測試、錨桿應力鑑測、圍巖應力鑑測、光纖光柵鑑測和聲髮射鑑測為主,輔以適量的多點位移計鑑測。
재이유연구적기출상개소원위시험적감측성과。본차원위시험현시인수수동굴진과정중,장자면전방1.2배동경적위암즉회산생위이화응력변화,동시야회산생일사미파렬,장자면후방0~10 m적범위시응력변화최극렬적구단。성발사감측현시장자면전방-5 m지장자면후방10 m적범위시위암손상파렬밀집산생적구단,장자면후방초과10 m구단위암적손상파렬기본추우은정。광섬광책감측성과현시고근동벽파위암손상비교엄중적구역회출현체후파렬현상,즉장자면효응완전소실후,일사천표층적미렬문회잉회형성굉관렬문。인수수동개알후우측공견적위암손상최위엄중,심도약3 m。다점위이계측시성과현시수동개알과정중위암적변형문제병불돌출,심매수동적감측공작응이송동권측시、묘간응력감측、위암응력감측、광섬광책감측화성발사감측위주,보이괄량적다점위이계감측。
This paper presents the in-situ test results on the basis of the previous research. The in-situ tests showed that the deformation,the stress change and the microcrack initiation occurred in the the rock mass at didtance of 1.2 times of the diameter of diversion tunnel ahead of the excavation front,and the stress changed greatly in the rock mass 2-10 m behind tunnel front. The data of acoustic emission indicated that the rock mass in the range from 5 m ahead of the tunnel frount to 10 m behind the tunnel front produced the most acoustic emission energy during tunnelling and the acoustic emission was largely stable when the tunnel front was 10 m ahead of the acoustic emission monitoring section. The results of the optical fiber Bragg grating monitoring indicated that some closed cracks the rock mass close to the wall with serious excavation damage and subcritical crack growth reopened or further propagated even when the tunnel face effect disappeared. The most serious excavation damage occurred on the right spandrel and the damage zone was about 3 m in depth. The results from the multipoint displacement meter monitoring showed that the deformation of surrounding rock during tunnel excavation was not siginificant. The monitoring of deep tunnelling should therefore mainly focused on the measurement of excavation damage zone,stress in the rock bolts,stress in rocks,optical fiber Bragg grating and acoustic emission measurement and supplemented with a small number of multi-point displacement meters.