中南大学学报(英文版)
中南大學學報(英文版)
중남대학학보(영문판)
JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY(ENGLISH EDITION)
2014年
4期
1624-1632
,共9页
季彦婕%汤斗南%郭卫红%王炜%WANG Wei
季彥婕%湯鬥南%郭衛紅%王煒%WANG Wei
계언첩%탕두남%곽위홍%왕위%WANG Wei
available parking space%Lyapunov exponents%wavelet neural network%multi-step forecasting method
The techniques to forecast available parking space (APS) are indispensable components for parking guidance systems (PGS). According to the data collected in Newcastle upon Tyne, England, the changing characteristics of APS were studied. Thereafter, aiming to build up a multi-step APS forecasting model that provides richer information than a conventional one-step model, the largest Lyapunov exponents (largest LEs) method was introduced into PGS. By experimental tests conducted using the same dataset, its prediction performance was compared with traditional wavelet neural network (WNN) method in both one-step and multi-step processes. Based on the results, a new multi-step forecasting model called WNN-LE method was proposed, where WNN, which enjoys a more accurate performance along with a better learning ability in short-term forecasting, was applied in the early forecast steps while the Lyapunov exponent prediction method in the latter steps precisely reflect the chaotic feature in latter forecast period. The MSE of APS forecasting for one hour time period can be reduced from 83.1 to 27.1 (in a parking building with 492 berths) by using largest LEs method instead of WNN and further reduced to 19.0 by conducted the new method.